mirror of
https://github.com/WinampDesktop/winamp.git
synced 2025-06-17 20:55:45 -04:00
dep/libchdr: Sync to upstream (82670d5)
This commit is contained in:
@ -8,8 +8,8 @@
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#include "bitstream.h"
|
||||
#include <stdlib.h>
|
||||
#include <libchdr/bitstream.h>
|
||||
|
||||
/***************************************************************************
|
||||
* INLINE FUNCTIONS
|
@ -15,11 +15,12 @@
|
||||
schemes will differ after track 1!
|
||||
|
||||
***************************************************************************/
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "cdrom.h"
|
||||
#include <libchdr/cdrom.h>
|
||||
|
||||
#ifdef WANT_RAW_DATA_SECTOR
|
||||
|
||||
/***************************************************************************
|
||||
DEBUGGING
|
||||
@ -410,3 +411,5 @@ void ecc_clear(uint8_t *sector)
|
||||
memset(§or[ECC_P_OFFSET], 0, 2 * ECC_P_NUM_BYTES);
|
||||
memset(§or[ECC_Q_OFFSET], 0, 2 * ECC_Q_NUM_BYTES);
|
||||
}
|
||||
|
||||
#endif /* WANT_RAW_DATA_SECTOR */
|
File diff suppressed because it is too large
Load Diff
@ -10,7 +10,8 @@
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include "flac.h"
|
||||
|
||||
#include <libchdr/flac.h>
|
||||
|
||||
/***************************************************************************
|
||||
* FLAC DECODER
|
@ -101,7 +101,7 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "huffman.h"
|
||||
#include <libchdr/huffman.h>
|
||||
|
||||
#define MAX(x,y) ((x) > (y) ? (x) : (y))
|
||||
|
||||
@ -125,11 +125,13 @@
|
||||
|
||||
struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
|
||||
{
|
||||
struct huffman_decoder* decoder = NULL;
|
||||
|
||||
/* limit to 24 bits */
|
||||
if (maxbits > 24)
|
||||
return NULL;
|
||||
|
||||
struct huffman_decoder* decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
|
||||
decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
|
||||
decoder->numcodes = numcodes;
|
||||
decoder->maxbits = maxbits;
|
||||
decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
|
||||
@ -140,6 +142,18 @@ struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
|
||||
return decoder;
|
||||
}
|
||||
|
||||
void delete_huffman_decoder(struct huffman_decoder* decoder)
|
||||
{
|
||||
if (decoder != NULL)
|
||||
{
|
||||
if (decoder->lookup != NULL)
|
||||
free(decoder->lookup);
|
||||
if (decoder->huffnode != NULL)
|
||||
free(decoder->huffnode);
|
||||
free(decoder);
|
||||
}
|
||||
}
|
||||
|
||||
/*-------------------------------------------------
|
||||
* decode_one - decode a single code from the
|
||||
* huffman stream
|
||||
@ -167,8 +181,10 @@ uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* b
|
||||
|
||||
enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
|
||||
{
|
||||
int numbits, curnode;
|
||||
enum huffman_error error;
|
||||
|
||||
/* bits per entry depends on the maxbits */
|
||||
int numbits;
|
||||
if (decoder->maxbits >= 16)
|
||||
numbits = 5;
|
||||
else if (decoder->maxbits >= 8)
|
||||
@ -177,7 +193,6 @@ enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, stru
|
||||
numbits = 3;
|
||||
|
||||
/* loop until we read all the nodes */
|
||||
int curnode;
|
||||
for (curnode = 0; curnode < decoder->numcodes; )
|
||||
{
|
||||
/* a non-one value is just raw */
|
||||
@ -208,7 +223,7 @@ enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, stru
|
||||
return HUFFERR_INVALID_DATA;
|
||||
|
||||
/* assign canonical codes for all nodes based on their code lengths */
|
||||
enum huffman_error error = huffman_assign_canonical_codes(decoder);
|
||||
error = huffman_assign_canonical_codes(decoder);
|
||||
if (error != HUFFERR_NONE)
|
||||
return error;
|
||||
|
||||
@ -228,12 +243,19 @@ enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, stru
|
||||
|
||||
enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
|
||||
{
|
||||
int start;
|
||||
int last = 0;
|
||||
int count = 0;
|
||||
int index;
|
||||
int curcode;
|
||||
uint8_t rlefullbits = 0;
|
||||
uint32_t temp;
|
||||
enum huffman_error error;
|
||||
/* start by parsing the lengths for the small tree */
|
||||
struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
|
||||
smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
|
||||
int start = bitstream_read(bitbuf, 3) + 1;
|
||||
int count = 0;
|
||||
for (int index = 1; index < 24; index++)
|
||||
start = bitstream_read(bitbuf, 3) + 1;
|
||||
for (index = 1; index < 24; index++)
|
||||
{
|
||||
if (index < start || count == 7)
|
||||
smallhuff->huffnode[index].numbits = 0;
|
||||
@ -245,20 +267,17 @@ enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder,
|
||||
}
|
||||
|
||||
/* then regenerate the tree */
|
||||
enum huffman_error error = huffman_assign_canonical_codes(smallhuff);
|
||||
error = huffman_assign_canonical_codes(smallhuff);
|
||||
if (error != HUFFERR_NONE)
|
||||
return error;
|
||||
huffman_build_lookup_table(smallhuff);
|
||||
|
||||
/* determine the maximum length of an RLE count */
|
||||
uint32_t temp = decoder->numcodes - 9;
|
||||
uint8_t rlefullbits = 0;
|
||||
temp = decoder->numcodes - 9;
|
||||
while (temp != 0)
|
||||
temp >>= 1, rlefullbits++;
|
||||
|
||||
/* now process the rest of the data */
|
||||
int last = 0;
|
||||
int curcode;
|
||||
for (curcode = 0; curcode < decoder->numcodes; )
|
||||
{
|
||||
int value = huffman_decode_one(smallhuff, bitbuf);
|
||||
@ -298,14 +317,17 @@ enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder,
|
||||
|
||||
enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
|
||||
{
|
||||
int i;
|
||||
uint32_t lowerweight;
|
||||
uint32_t upperweight;
|
||||
/* compute the number of data items in the histogram */
|
||||
uint32_t sdatacount = 0;
|
||||
for (int i = 0; i < decoder->numcodes; i++)
|
||||
for (i = 0; i < decoder->numcodes; i++)
|
||||
sdatacount += decoder->datahisto[i];
|
||||
|
||||
/* binary search to achieve the optimum encoding */
|
||||
uint32_t lowerweight = 0;
|
||||
uint32_t upperweight = sdatacount * 2;
|
||||
lowerweight = 0;
|
||||
upperweight = sdatacount * 2;
|
||||
while (1)
|
||||
{
|
||||
/* build a tree using the current weight */
|
||||
@ -359,11 +381,14 @@ static int huffman_tree_node_compare(const void *item1, const void *item2)
|
||||
|
||||
int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
|
||||
{
|
||||
int curcode;
|
||||
int nextalloc;
|
||||
int listitems = 0;
|
||||
int maxbits = 0;
|
||||
/* make a list of all non-zero nodes */
|
||||
struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
|
||||
int listitems = 0;
|
||||
memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0]));
|
||||
for (int curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
if (decoder->datahisto[curcode] != 0)
|
||||
{
|
||||
list[listitems++] = &decoder->huffnode[curcode];
|
||||
@ -395,9 +420,10 @@ int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint
|
||||
#endif
|
||||
|
||||
/* now build the tree */
|
||||
int nextalloc = decoder->numcodes;
|
||||
nextalloc = decoder->numcodes;
|
||||
while (listitems > 1)
|
||||
{
|
||||
int curitem;
|
||||
/* remove lowest two items */
|
||||
struct node_t* node1 = &(*list[--listitems]);
|
||||
struct node_t* node0 = &(*list[--listitems]);
|
||||
@ -409,7 +435,6 @@ int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint
|
||||
newnode->weight = node0->weight + node1->weight;
|
||||
|
||||
/* insert into list at appropriate location */
|
||||
int curitem;
|
||||
for (curitem = 0; curitem < listitems; curitem++)
|
||||
if (newnode->weight > list[curitem]->weight)
|
||||
{
|
||||
@ -421,9 +446,9 @@ int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint
|
||||
}
|
||||
|
||||
/* compute the number of bits in each code, and fill in another histogram */
|
||||
int maxbits = 0;
|
||||
for (int curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
struct node_t *curnode;
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
node->numbits = 0;
|
||||
node->bits = 0;
|
||||
@ -432,7 +457,7 @@ int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint
|
||||
if (node->weight > 0)
|
||||
{
|
||||
/* determine the number of bits for this node */
|
||||
for (struct node_t *curnode = node; curnode->parent != NULL; curnode = curnode->parent)
|
||||
for (curnode = node; curnode->parent != NULL; curnode = curnode->parent)
|
||||
node->numbits++;
|
||||
if (node->numbits == 0)
|
||||
node->numbits = 1;
|
||||
@ -453,9 +478,11 @@ int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint
|
||||
|
||||
enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
|
||||
{
|
||||
int curcode, codelen;
|
||||
uint32_t curstart = 0;
|
||||
/* build up a histogram of bit lengths */
|
||||
uint32_t bithisto[33] = { 0 };
|
||||
for (int curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
if (node->numbits > decoder->maxbits)
|
||||
@ -465,8 +492,7 @@ enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decode
|
||||
}
|
||||
|
||||
/* for each code length, determine the starting code number */
|
||||
uint32_t curstart = 0;
|
||||
for (int codelen = 32; codelen > 0; codelen--)
|
||||
for (codelen = 32; codelen > 0; codelen--)
|
||||
{
|
||||
uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
|
||||
if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
|
||||
@ -476,7 +502,7 @@ enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decode
|
||||
}
|
||||
|
||||
/* now assign canonical codes */
|
||||
for (int curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
if (node->numbits > 0)
|
||||
@ -493,20 +519,24 @@ enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decode
|
||||
|
||||
void huffman_build_lookup_table(struct huffman_decoder* decoder)
|
||||
{
|
||||
int curcode;
|
||||
/* iterate over all codes */
|
||||
for (int curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
for (curcode = 0; curcode < decoder->numcodes; curcode++)
|
||||
{
|
||||
/* process all nodes which have non-zero bits */
|
||||
struct node_t* node = &decoder->huffnode[curcode];
|
||||
if (node->numbits > 0)
|
||||
{
|
||||
int shift;
|
||||
lookup_value *dest;
|
||||
lookup_value *destend;
|
||||
/* set up the entry */
|
||||
lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
|
||||
|
||||
/* fill all matching entries */
|
||||
int shift = decoder->maxbits - node->numbits;
|
||||
lookup_value *dest = &decoder->lookup[node->bits << shift];
|
||||
lookup_value *destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
|
||||
shift = decoder->maxbits - node->numbits;
|
||||
dest = &decoder->lookup[node->bits << shift];
|
||||
destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
|
||||
while (dest <= destend)
|
||||
*dest++ = value;
|
||||
}
|
@ -1,189 +0,0 @@
|
||||
/*********************************************************************
|
||||
* Filename: md5.c
|
||||
* Author: Brad Conte (brad AT bradconte.com)
|
||||
* Copyright:
|
||||
* Disclaimer: This code is presented "as is" without any guarantees.
|
||||
* Details: Implementation of the MD5 hashing algorithm.
|
||||
Algorithm specification can be found here:
|
||||
* http://tools.ietf.org/html/rfc1321
|
||||
This implementation uses little endian byte order.
|
||||
*********************************************************************/
|
||||
|
||||
/*************************** HEADER FILES ***************************/
|
||||
#include <stdlib.h>
|
||||
#include <memory.h>
|
||||
#include "md5.h"
|
||||
|
||||
/****************************** MACROS ******************************/
|
||||
#define ROTLEFT(a,b) ((a << b) | (a >> (32-b)))
|
||||
|
||||
#define F(x,y,z) ((x & y) | (~x & z))
|
||||
#define G(x,y,z) ((x & z) | (y & ~z))
|
||||
#define H(x,y,z) (x ^ y ^ z)
|
||||
#define I(x,y,z) (y ^ (x | ~z))
|
||||
|
||||
#define FF(a,b,c,d,m,s,t) { a += F(b,c,d) + m + t; \
|
||||
a = b + ROTLEFT(a,s); }
|
||||
#define GG(a,b,c,d,m,s,t) { a += G(b,c,d) + m + t; \
|
||||
a = b + ROTLEFT(a,s); }
|
||||
#define HH(a,b,c,d,m,s,t) { a += H(b,c,d) + m + t; \
|
||||
a = b + ROTLEFT(a,s); }
|
||||
#define II(a,b,c,d,m,s,t) { a += I(b,c,d) + m + t; \
|
||||
a = b + ROTLEFT(a,s); }
|
||||
|
||||
/*********************** FUNCTION DEFINITIONS ***********************/
|
||||
void md5_transform(MD5_CTX *ctx, const BYTE data[])
|
||||
{
|
||||
WORD a, b, c, d, m[16], i, j;
|
||||
|
||||
// MD5 specifies big endian byte order, but this implementation assumes a little
|
||||
// endian byte order CPU. Reverse all the bytes upon input, and re-reverse them
|
||||
// on output (in md5_final()).
|
||||
for (i = 0, j = 0; i < 16; ++i, j += 4)
|
||||
m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24);
|
||||
|
||||
a = ctx->state[0];
|
||||
b = ctx->state[1];
|
||||
c = ctx->state[2];
|
||||
d = ctx->state[3];
|
||||
|
||||
FF(a,b,c,d,m[0], 7,0xd76aa478);
|
||||
FF(d,a,b,c,m[1], 12,0xe8c7b756);
|
||||
FF(c,d,a,b,m[2], 17,0x242070db);
|
||||
FF(b,c,d,a,m[3], 22,0xc1bdceee);
|
||||
FF(a,b,c,d,m[4], 7,0xf57c0faf);
|
||||
FF(d,a,b,c,m[5], 12,0x4787c62a);
|
||||
FF(c,d,a,b,m[6], 17,0xa8304613);
|
||||
FF(b,c,d,a,m[7], 22,0xfd469501);
|
||||
FF(a,b,c,d,m[8], 7,0x698098d8);
|
||||
FF(d,a,b,c,m[9], 12,0x8b44f7af);
|
||||
FF(c,d,a,b,m[10],17,0xffff5bb1);
|
||||
FF(b,c,d,a,m[11],22,0x895cd7be);
|
||||
FF(a,b,c,d,m[12], 7,0x6b901122);
|
||||
FF(d,a,b,c,m[13],12,0xfd987193);
|
||||
FF(c,d,a,b,m[14],17,0xa679438e);
|
||||
FF(b,c,d,a,m[15],22,0x49b40821);
|
||||
|
||||
GG(a,b,c,d,m[1], 5,0xf61e2562);
|
||||
GG(d,a,b,c,m[6], 9,0xc040b340);
|
||||
GG(c,d,a,b,m[11],14,0x265e5a51);
|
||||
GG(b,c,d,a,m[0], 20,0xe9b6c7aa);
|
||||
GG(a,b,c,d,m[5], 5,0xd62f105d);
|
||||
GG(d,a,b,c,m[10], 9,0x02441453);
|
||||
GG(c,d,a,b,m[15],14,0xd8a1e681);
|
||||
GG(b,c,d,a,m[4], 20,0xe7d3fbc8);
|
||||
GG(a,b,c,d,m[9], 5,0x21e1cde6);
|
||||
GG(d,a,b,c,m[14], 9,0xc33707d6);
|
||||
GG(c,d,a,b,m[3], 14,0xf4d50d87);
|
||||
GG(b,c,d,a,m[8], 20,0x455a14ed);
|
||||
GG(a,b,c,d,m[13], 5,0xa9e3e905);
|
||||
GG(d,a,b,c,m[2], 9,0xfcefa3f8);
|
||||
GG(c,d,a,b,m[7], 14,0x676f02d9);
|
||||
GG(b,c,d,a,m[12],20,0x8d2a4c8a);
|
||||
|
||||
HH(a,b,c,d,m[5], 4,0xfffa3942);
|
||||
HH(d,a,b,c,m[8], 11,0x8771f681);
|
||||
HH(c,d,a,b,m[11],16,0x6d9d6122);
|
||||
HH(b,c,d,a,m[14],23,0xfde5380c);
|
||||
HH(a,b,c,d,m[1], 4,0xa4beea44);
|
||||
HH(d,a,b,c,m[4], 11,0x4bdecfa9);
|
||||
HH(c,d,a,b,m[7], 16,0xf6bb4b60);
|
||||
HH(b,c,d,a,m[10],23,0xbebfbc70);
|
||||
HH(a,b,c,d,m[13], 4,0x289b7ec6);
|
||||
HH(d,a,b,c,m[0], 11,0xeaa127fa);
|
||||
HH(c,d,a,b,m[3], 16,0xd4ef3085);
|
||||
HH(b,c,d,a,m[6], 23,0x04881d05);
|
||||
HH(a,b,c,d,m[9], 4,0xd9d4d039);
|
||||
HH(d,a,b,c,m[12],11,0xe6db99e5);
|
||||
HH(c,d,a,b,m[15],16,0x1fa27cf8);
|
||||
HH(b,c,d,a,m[2], 23,0xc4ac5665);
|
||||
|
||||
II(a,b,c,d,m[0], 6,0xf4292244);
|
||||
II(d,a,b,c,m[7], 10,0x432aff97);
|
||||
II(c,d,a,b,m[14],15,0xab9423a7);
|
||||
II(b,c,d,a,m[5], 21,0xfc93a039);
|
||||
II(a,b,c,d,m[12], 6,0x655b59c3);
|
||||
II(d,a,b,c,m[3], 10,0x8f0ccc92);
|
||||
II(c,d,a,b,m[10],15,0xffeff47d);
|
||||
II(b,c,d,a,m[1], 21,0x85845dd1);
|
||||
II(a,b,c,d,m[8], 6,0x6fa87e4f);
|
||||
II(d,a,b,c,m[15],10,0xfe2ce6e0);
|
||||
II(c,d,a,b,m[6], 15,0xa3014314);
|
||||
II(b,c,d,a,m[13],21,0x4e0811a1);
|
||||
II(a,b,c,d,m[4], 6,0xf7537e82);
|
||||
II(d,a,b,c,m[11],10,0xbd3af235);
|
||||
II(c,d,a,b,m[2], 15,0x2ad7d2bb);
|
||||
II(b,c,d,a,m[9], 21,0xeb86d391);
|
||||
|
||||
ctx->state[0] += a;
|
||||
ctx->state[1] += b;
|
||||
ctx->state[2] += c;
|
||||
ctx->state[3] += d;
|
||||
}
|
||||
|
||||
void md5_init(MD5_CTX *ctx)
|
||||
{
|
||||
ctx->datalen = 0;
|
||||
ctx->bitlen = 0;
|
||||
ctx->state[0] = 0x67452301;
|
||||
ctx->state[1] = 0xEFCDAB89;
|
||||
ctx->state[2] = 0x98BADCFE;
|
||||
ctx->state[3] = 0x10325476;
|
||||
}
|
||||
|
||||
void md5_update(MD5_CTX *ctx, const BYTE data[], size_t len)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len; ++i) {
|
||||
ctx->data[ctx->datalen] = data[i];
|
||||
ctx->datalen++;
|
||||
if (ctx->datalen == 64) {
|
||||
md5_transform(ctx, ctx->data);
|
||||
ctx->bitlen += 512;
|
||||
ctx->datalen = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void md5_final(MD5_CTX *ctx, BYTE hash[])
|
||||
{
|
||||
size_t i;
|
||||
|
||||
i = ctx->datalen;
|
||||
|
||||
// Pad whatever data is left in the buffer.
|
||||
if (ctx->datalen < 56) {
|
||||
ctx->data[i++] = 0x80;
|
||||
while (i < 56)
|
||||
ctx->data[i++] = 0x00;
|
||||
}
|
||||
else if (ctx->datalen >= 56) {
|
||||
ctx->data[i++] = 0x80;
|
||||
while (i < 64)
|
||||
ctx->data[i++] = 0x00;
|
||||
md5_transform(ctx, ctx->data);
|
||||
memset(ctx->data, 0, 56);
|
||||
}
|
||||
|
||||
// Append to the padding the total message's length in bits and transform.
|
||||
ctx->bitlen += ctx->datalen * 8;
|
||||
ctx->data[56] = ctx->bitlen;
|
||||
ctx->data[57] = ctx->bitlen >> 8;
|
||||
ctx->data[58] = ctx->bitlen >> 16;
|
||||
ctx->data[59] = ctx->bitlen >> 24;
|
||||
ctx->data[60] = ctx->bitlen >> 32;
|
||||
ctx->data[61] = ctx->bitlen >> 40;
|
||||
ctx->data[62] = ctx->bitlen >> 48;
|
||||
ctx->data[63] = ctx->bitlen >> 56;
|
||||
md5_transform(ctx, ctx->data);
|
||||
|
||||
// Since this implementation uses little endian byte ordering and MD uses big endian,
|
||||
// reverse all the bytes when copying the final state to the output hash.
|
||||
for (i = 0; i < 4; ++i) {
|
||||
hash[i] = (ctx->state[0] >> (i * 8)) & 0x000000ff;
|
||||
hash[i + 4] = (ctx->state[1] >> (i * 8)) & 0x000000ff;
|
||||
hash[i + 8] = (ctx->state[2] >> (i * 8)) & 0x000000ff;
|
||||
hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff;
|
||||
}
|
||||
}
|
@ -1,34 +0,0 @@
|
||||
/*********************************************************************
|
||||
* Filename: md5.h
|
||||
* Author: Brad Conte (brad AT bradconte.com)
|
||||
* Copyright:
|
||||
* Disclaimer: This code is presented "as is" without any guarantees.
|
||||
* Details: Defines the API for the corresponding MD5 implementation.
|
||||
*********************************************************************/
|
||||
|
||||
#ifndef MD5_H
|
||||
#define MD5_H
|
||||
|
||||
/*************************** HEADER FILES ***************************/
|
||||
#include <stddef.h>
|
||||
|
||||
/****************************** MACROS ******************************/
|
||||
#define MD5_BLOCK_SIZE 16 // MD5 outputs a 16 byte digest
|
||||
|
||||
/**************************** DATA TYPES ****************************/
|
||||
typedef unsigned char BYTE; // 8-bit byte
|
||||
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
|
||||
|
||||
typedef struct {
|
||||
BYTE data[64];
|
||||
WORD datalen;
|
||||
unsigned long long bitlen;
|
||||
WORD state[4];
|
||||
} MD5_CTX;
|
||||
|
||||
/*********************** FUNCTION DECLARATIONS **********************/
|
||||
void md5_init(MD5_CTX *ctx);
|
||||
void md5_update(MD5_CTX *ctx, const BYTE data[], size_t len);
|
||||
void md5_final(MD5_CTX *ctx, BYTE hash[]);
|
||||
|
||||
#endif // MD5_H
|
@ -1,149 +0,0 @@
|
||||
/*********************************************************************
|
||||
* Filename: sha1.c
|
||||
* Author: Brad Conte (brad AT bradconte.com)
|
||||
* Copyright:
|
||||
* Disclaimer: This code is presented "as is" without any guarantees.
|
||||
* Details: Implementation of the SHA1 hashing algorithm.
|
||||
Algorithm specification can be found here:
|
||||
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
|
||||
This implementation uses little endian byte order.
|
||||
*********************************************************************/
|
||||
|
||||
/*************************** HEADER FILES ***************************/
|
||||
#include <stdlib.h>
|
||||
#include <memory.h>
|
||||
#include "sha1.h"
|
||||
|
||||
/****************************** MACROS ******************************/
|
||||
#define ROTLEFT(a, b) ((a << b) | (a >> (32 - b)))
|
||||
|
||||
/*********************** FUNCTION DEFINITIONS ***********************/
|
||||
void sha1_transform(SHA1_CTX *ctx, const BYTE data[])
|
||||
{
|
||||
WORD a, b, c, d, e, i, j, t, m[80];
|
||||
|
||||
for (i = 0, j = 0; i < 16; ++i, j += 4)
|
||||
m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]);
|
||||
for ( ; i < 80; ++i) {
|
||||
m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]);
|
||||
m[i] = (m[i] << 1) | (m[i] >> 31);
|
||||
}
|
||||
|
||||
a = ctx->state[0];
|
||||
b = ctx->state[1];
|
||||
c = ctx->state[2];
|
||||
d = ctx->state[3];
|
||||
e = ctx->state[4];
|
||||
|
||||
for (i = 0; i < 20; ++i) {
|
||||
t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i];
|
||||
e = d;
|
||||
d = c;
|
||||
c = ROTLEFT(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
}
|
||||
for ( ; i < 40; ++i) {
|
||||
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i];
|
||||
e = d;
|
||||
d = c;
|
||||
c = ROTLEFT(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
}
|
||||
for ( ; i < 60; ++i) {
|
||||
t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2] + m[i];
|
||||
e = d;
|
||||
d = c;
|
||||
c = ROTLEFT(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
}
|
||||
for ( ; i < 80; ++i) {
|
||||
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i];
|
||||
e = d;
|
||||
d = c;
|
||||
c = ROTLEFT(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
}
|
||||
|
||||
ctx->state[0] += a;
|
||||
ctx->state[1] += b;
|
||||
ctx->state[2] += c;
|
||||
ctx->state[3] += d;
|
||||
ctx->state[4] += e;
|
||||
}
|
||||
|
||||
void sha1_init(SHA1_CTX *ctx)
|
||||
{
|
||||
ctx->datalen = 0;
|
||||
ctx->bitlen = 0;
|
||||
ctx->state[0] = 0x67452301;
|
||||
ctx->state[1] = 0xEFCDAB89;
|
||||
ctx->state[2] = 0x98BADCFE;
|
||||
ctx->state[3] = 0x10325476;
|
||||
ctx->state[4] = 0xc3d2e1f0;
|
||||
ctx->k[0] = 0x5a827999;
|
||||
ctx->k[1] = 0x6ed9eba1;
|
||||
ctx->k[2] = 0x8f1bbcdc;
|
||||
ctx->k[3] = 0xca62c1d6;
|
||||
}
|
||||
|
||||
void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len; ++i) {
|
||||
ctx->data[ctx->datalen] = data[i];
|
||||
ctx->datalen++;
|
||||
if (ctx->datalen == 64) {
|
||||
sha1_transform(ctx, ctx->data);
|
||||
ctx->bitlen += 512;
|
||||
ctx->datalen = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void sha1_final(SHA1_CTX *ctx, BYTE hash[])
|
||||
{
|
||||
WORD i;
|
||||
|
||||
i = ctx->datalen;
|
||||
|
||||
// Pad whatever data is left in the buffer.
|
||||
if (ctx->datalen < 56) {
|
||||
ctx->data[i++] = 0x80;
|
||||
while (i < 56)
|
||||
ctx->data[i++] = 0x00;
|
||||
}
|
||||
else {
|
||||
ctx->data[i++] = 0x80;
|
||||
while (i < 64)
|
||||
ctx->data[i++] = 0x00;
|
||||
sha1_transform(ctx, ctx->data);
|
||||
memset(ctx->data, 0, 56);
|
||||
}
|
||||
|
||||
// Append to the padding the total message's length in bits and transform.
|
||||
ctx->bitlen += ctx->datalen * 8;
|
||||
ctx->data[63] = ctx->bitlen;
|
||||
ctx->data[62] = ctx->bitlen >> 8;
|
||||
ctx->data[61] = ctx->bitlen >> 16;
|
||||
ctx->data[60] = ctx->bitlen >> 24;
|
||||
ctx->data[59] = ctx->bitlen >> 32;
|
||||
ctx->data[58] = ctx->bitlen >> 40;
|
||||
ctx->data[57] = ctx->bitlen >> 48;
|
||||
ctx->data[56] = ctx->bitlen >> 56;
|
||||
sha1_transform(ctx, ctx->data);
|
||||
|
||||
// Since this implementation uses little endian byte ordering and MD uses big endian,
|
||||
// reverse all the bytes when copying the final state to the output hash.
|
||||
for (i = 0; i < 4; ++i) {
|
||||
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
|
||||
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
|
||||
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
|
||||
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
|
||||
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
|
||||
}
|
||||
}
|
@ -1,35 +0,0 @@
|
||||
/*********************************************************************
|
||||
* Filename: sha1.h
|
||||
* Author: Brad Conte (brad AT bradconte.com)
|
||||
* Copyright:
|
||||
* Disclaimer: This code is presented "as is" without any guarantees.
|
||||
* Details: Defines the API for the corresponding SHA1 implementation.
|
||||
*********************************************************************/
|
||||
|
||||
#ifndef SHA1_H
|
||||
#define SHA1_H
|
||||
|
||||
/*************************** HEADER FILES ***************************/
|
||||
#include <stddef.h>
|
||||
|
||||
/****************************** MACROS ******************************/
|
||||
#define SHA1_BLOCK_SIZE 20 // SHA1 outputs a 20 byte digest
|
||||
|
||||
/**************************** DATA TYPES ****************************/
|
||||
typedef unsigned char BYTE; // 8-bit byte
|
||||
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
|
||||
|
||||
typedef struct {
|
||||
BYTE data[64];
|
||||
WORD datalen;
|
||||
unsigned long long bitlen;
|
||||
WORD state[5];
|
||||
WORD k[4];
|
||||
} SHA1_CTX;
|
||||
|
||||
/*********************** FUNCTION DECLARATIONS **********************/
|
||||
void sha1_init(SHA1_CTX *ctx);
|
||||
void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len);
|
||||
void sha1_final(SHA1_CTX *ctx, BYTE hash[]);
|
||||
|
||||
#endif // SHA1_H
|
Reference in New Issue
Block a user