mirror of
https://github.com/WinampDesktop/winamp.git
synced 2025-06-18 03:45:46 -04:00
Data: Include crt-royale
From https://github.com/akgunter/crt-royale-reshade
This commit is contained in:
@ -0,0 +1,908 @@
|
||||
#ifndef _BIND_SHADER_PARAMS_H
|
||||
#define _BIND_SHADER_PARAMS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// crt-royale-reshade: A port of TroggleMonkey's crt-royale from libretro to ReShade.
|
||||
// Copyright (C) 2020 Alex Gunter <akg7634@gmail.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
||||
#include "helper-functions-and-macros.fxh"
|
||||
#include "user-settings.fxh"
|
||||
#include "derived-settings-and-constants.fxh"
|
||||
#include "../version-number.fxh"
|
||||
|
||||
//////////////////////////////// END INCLUDES ////////////////////////////////
|
||||
|
||||
// Override some parameters for gamma-management.h and tex2Dantialias.h:
|
||||
#ifndef _OVERRIDE_DEVICE_GAMMA
|
||||
#define _OVERRIDE_DEVICE_GAMMA 1
|
||||
#endif
|
||||
|
||||
#if __RENDERER__ != 0x9000
|
||||
#define _DX9_ACTIVE 0
|
||||
#else
|
||||
#define _DX9_ACTIVE 1
|
||||
#endif
|
||||
|
||||
// #ifndef ANTIALIAS_OVERRIDE_BASICS
|
||||
// #define ANTIALIAS_OVERRIDE_BASICS 1
|
||||
// #endif
|
||||
|
||||
// #ifndef ANTIALIAS_OVERRIDE_PARAMETERS
|
||||
// #define ANTIALIAS_OVERRIDE_PARAMETERS 1
|
||||
// #endif
|
||||
|
||||
#ifndef ADVANCED_SETTINGS
|
||||
#define ADVANCED_SETTINGS 0
|
||||
#endif
|
||||
|
||||
// The width of the game's content
|
||||
#ifndef CONTENT_WIDTH
|
||||
#define CONTENT_WIDTH BUFFER_WIDTH
|
||||
#endif
|
||||
// The height of the game's content
|
||||
#ifndef CONTENT_HEIGHT
|
||||
#define CONTENT_HEIGHT BUFFER_HEIGHT
|
||||
#endif
|
||||
|
||||
#if ADVANCED_SETTINGS == 1
|
||||
// Using vertex uncropping is marginally faster, but vulnerable to DX9 weirdness.
|
||||
// Most users will likely prefer the slower algorithm.
|
||||
#ifndef USE_VERTEX_UNCROPPING
|
||||
#define USE_VERTEX_UNCROPPING 0
|
||||
#endif
|
||||
|
||||
#ifndef NUM_BEAMDIST_COLOR_SAMPLES
|
||||
#define NUM_BEAMDIST_COLOR_SAMPLES 1024
|
||||
#endif
|
||||
|
||||
#ifndef NUM_BEAMDIST_DIST_SAMPLES
|
||||
#define NUM_BEAMDIST_DIST_SAMPLES 120
|
||||
#endif
|
||||
|
||||
#ifndef BLOOMAPPROX_DOWNSIZING_FACTOR
|
||||
#define BLOOMAPPROX_DOWNSIZING_FACTOR 4.0
|
||||
#endif
|
||||
|
||||
// Define this internal value, so ADVANCED_SETTINGS == 0 doesn't cause a redefinition error when
|
||||
// NUM_BEAMDIST_COLOR_SAMPLES defined in the preset file. Also makes it easy to avoid bugs
|
||||
// related to parentheses and order-of-operations when the user defines this arithmetically.
|
||||
static const uint num_beamdist_color_samples = uint(NUM_BEAMDIST_COLOR_SAMPLES);
|
||||
static const uint num_beamdist_dist_samples = uint(NUM_BEAMDIST_DIST_SAMPLES);
|
||||
static const float bloomapprox_downsizing_factor = float(BLOOMAPPROX_DOWNSIZING_FACTOR);
|
||||
#else
|
||||
static const uint USE_VERTEX_CROPPING = 0;
|
||||
static const uint num_beamdist_color_samples = 1024;
|
||||
static const uint num_beamdist_dist_samples = 120;
|
||||
static const float bloomapprox_downsizing_factor = 4.0;
|
||||
#endif
|
||||
|
||||
#ifndef HIDE_HELP_SECTIONS
|
||||
#define HIDE_HELP_SECTIONS 0
|
||||
#endif
|
||||
|
||||
|
||||
// Offset the center of the game's content (horizontal)
|
||||
#ifndef CONTENT_CENTER_X
|
||||
#define CONTENT_CENTER_X 0
|
||||
#endif
|
||||
// Offset the center of the game's content (vertical)
|
||||
#ifndef CONTENT_CENTER_Y
|
||||
#define CONTENT_CENTER_Y 0
|
||||
#endif
|
||||
|
||||
// Wrap the content size in parenthesis for internal use, so the user doesn't have to
|
||||
static const float2 content_size = float2(int(CONTENT_WIDTH), int(CONTENT_HEIGHT));
|
||||
|
||||
#ifndef ENABLE_PREBLUR
|
||||
#define ENABLE_PREBLUR 1
|
||||
#endif
|
||||
|
||||
|
||||
static const float2 buffer_size = float2(BUFFER_WIDTH, BUFFER_HEIGHT);
|
||||
|
||||
|
||||
// The normalized center is 0.5 plus the normalized offset
|
||||
static const float2 content_center = float2(CONTENT_CENTER_X, CONTENT_CENTER_Y) / buffer_size + 0.5;
|
||||
// The content's normalized diameter d is its size divided by the buffer's size. The radius is d/2.
|
||||
static const float2 content_radius = content_size / (2.0 * buffer_size);
|
||||
static const float2 content_scale = content_size / buffer_size;
|
||||
|
||||
static const float content_left = content_center.x - content_radius.x;
|
||||
static const float content_right = content_center.x + content_radius.x;
|
||||
static const float content_upper = content_center.y - content_radius.y;
|
||||
static const float content_lower = content_center.y + content_radius.y;
|
||||
|
||||
// The xy-offset of the top-left pixel in the content box
|
||||
static const float2 content_offset = float2(content_left, content_upper);
|
||||
static const float2 content_offset_from_right = float2(content_right, content_lower);
|
||||
|
||||
uniform uint frame_count < source = "framecount"; >;
|
||||
uniform int overlay_active < source = "overlay_active"; >;
|
||||
|
||||
static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
|
||||
|
||||
|
||||
// === HELP AND INFO ===
|
||||
|
||||
uniform int APPEND_VERSION_SUFFIX(version) <
|
||||
ui_text = "Version: " DOT_VERSION_STR;
|
||||
ui_label = " ";
|
||||
ui_type = "radio";
|
||||
>;
|
||||
|
||||
uniform int basic_setup_help <
|
||||
ui_text = "1. Configure the Content Box if your game has letter-boxing.\n"
|
||||
"2. Configure the Phosphor Mask.\n"
|
||||
"3. Configure the Scanlines.\n"
|
||||
"4. Configure the Colors and Effects.\n"
|
||||
"5. Configure the Screen Geometry.\n"
|
||||
"6. Configure or disable Preblur\n\n"
|
||||
"- In Preprocessor Definitions, set ADVANCED_SETTINGS to 1 to access more settings.\n";
|
||||
ui_category = "Basic Setup Instructions";
|
||||
ui_category_closed = true;
|
||||
ui_label = " ";
|
||||
ui_type = "radio";
|
||||
hidden = HIDE_HELP_SECTIONS;
|
||||
>;
|
||||
|
||||
uniform int content_box_help <
|
||||
ui_text = "1. Expand the Preprocessor Definitions section.\n"
|
||||
"2. Set CONTENT_BOX_VISIBLE to 1.\n"
|
||||
"3. Use the \"CONTENT_\" parameters to configure the Content Box.\n"
|
||||
"4. Align the content box with the border of your game.\n"
|
||||
"5. Set CONTENT_BOX_VISIBLE to 0 when you're done.\n\n"
|
||||
"Parameters to focus on:\n"
|
||||
"- CONTENT_HEIGHT and CONTENT_WIDTH\n"
|
||||
"- CONTENT_CENTER_X and CONTENT_CENTER_Y\n"
|
||||
"- CONTENT_BOX_INSCRIBED\n\n"
|
||||
"Fancy Trick 1:\n"
|
||||
"\tCONTENT_HEIGHT = BUFFER_HEIGHT\n"
|
||||
"\tCONTENT_WIDTH = CONTENT_HEIGHT * 4.0 / 3.0\n"
|
||||
"- Good if your game fills the screen vertically and has a 4:3 aspect ratio.\n"
|
||||
"- Will also rescale automatically if you resize the window.\n\n"
|
||||
"Fancy Trick 2:\n"
|
||||
"\tCONTENT_HEIGHT = CONTENT_WIDTH * 9.0 / 16.0\n"
|
||||
"\tCONTENT_WIDTH = 1500\n"
|
||||
"- Good if your game is 1500 pixels wide with a 16:9 aspect ratio.\n"
|
||||
"- Won't rescale automatically, but you'd only have to change the width.\n";
|
||||
ui_category = "Content Box Instructions";
|
||||
ui_category_closed = true;
|
||||
ui_label = " ";
|
||||
ui_type = "radio";
|
||||
hidden = HIDE_HELP_SECTIONS;
|
||||
>;
|
||||
|
||||
|
||||
// ==== PHOSPHOR MASK ====
|
||||
uniform int mask_type <
|
||||
#if !HIDE_HELP_SECTIONS
|
||||
ui_text = "Choose which kind of CRT you want.\n\n";
|
||||
#endif
|
||||
ui_label = "Mask Type";
|
||||
ui_tooltip = "Selects the phosphor shape";
|
||||
ui_type = "combo";
|
||||
ui_items = "Grille\0"
|
||||
"Slot\0"
|
||||
"Shadow\0"
|
||||
"LowRes Grille\0"
|
||||
"LowRes Slot\0"
|
||||
"LowRes Shadow\0";
|
||||
|
||||
ui_category = "Phosphor Mask";
|
||||
ui_category_closed = true;
|
||||
> = mask_type_static;
|
||||
|
||||
uniform uint mask_size_param <
|
||||
ui_label = "Mask Size Param";
|
||||
ui_tooltip = "Switch between using Mask Triad Size or Mask Num Triads";
|
||||
ui_type = "combo";
|
||||
ui_items = "Triad Width\0"
|
||||
"Num Triads Across\0";
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Phosphor Mask";
|
||||
> = mask_size_param_static;
|
||||
|
||||
uniform float mask_triad_width <
|
||||
ui_label = "Mask Triad Width";
|
||||
ui_tooltip = "The width of a triad in pixels";
|
||||
ui_type = "slider";
|
||||
ui_min = 1.0;
|
||||
ui_max = 60.0;
|
||||
ui_step = 0.1;
|
||||
|
||||
ui_category = "Phosphor Mask";
|
||||
> = mask_triad_width_static;
|
||||
|
||||
uniform float mask_num_triads_across <
|
||||
ui_label = "Mask Num Triads Across";
|
||||
ui_tooltip = "The number of triads in the viewport (horizontally)";
|
||||
ui_type = "drag";
|
||||
ui_min = 1.0;
|
||||
ui_max = 1280.0;
|
||||
ui_step = 1.0;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Phosphor Mask";
|
||||
> = mask_num_triads_across_static;
|
||||
|
||||
uniform float scale_triad_height<
|
||||
ui_label = "Scale Triad Height";
|
||||
ui_tooltip = "Scales the height of a triad";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.01;
|
||||
ui_max = 10.0;
|
||||
ui_step = 0.001;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Phosphor Mask";
|
||||
> = 1.0;
|
||||
|
||||
uniform float2 phosphor_thickness <
|
||||
ui_label = "Phosphor Thickness XY";
|
||||
ui_tooltip = "Makes the phosphors appear thicker in each direction";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.01;
|
||||
ui_max = 0.99;
|
||||
ui_step = 0.01;
|
||||
// hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Phosphor Mask";
|
||||
> = 0.2;
|
||||
|
||||
uniform float2 phosphor_sharpness <
|
||||
ui_label = "Phosphor Sharpness XY";
|
||||
ui_tooltip = "Makes the phosphors appear more crisp in each direction";
|
||||
ui_type = "drag";
|
||||
ui_min = 1;
|
||||
ui_max = 100;
|
||||
ui_step = 1;
|
||||
// hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Phosphor Mask";
|
||||
> = 50;
|
||||
|
||||
uniform float3 phosphor_offset_x <
|
||||
ui_label = "Phosphor Offset RGB X";
|
||||
ui_tooltip = "Very slightly shifts the phosphor mask. Can help with subpixel alignment.";
|
||||
ui_type = "drag";
|
||||
ui_min = -1;
|
||||
ui_max = 1;
|
||||
ui_step = 0.01;
|
||||
// hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Phosphor Mask";
|
||||
> = 0;
|
||||
|
||||
uniform float3 phosphor_offset_y <
|
||||
ui_label = "Phosphor Offset RGB Y";
|
||||
ui_tooltip = "Very slightly shifts the phosphor mask. Can help with subpixel alignment.";
|
||||
ui_type = "drag";
|
||||
ui_min = -1;
|
||||
ui_max = 1;
|
||||
ui_step = 0.01;
|
||||
// hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Phosphor Mask";
|
||||
> = 0;
|
||||
|
||||
// static const uint pixel_grid_mode = 0;
|
||||
// static const float2 pixel_size = 1;
|
||||
/*
|
||||
// ==== PIXELATION ===
|
||||
uniform uint pixel_grid_mode <
|
||||
#if !HIDE_HELP_SECTIONS
|
||||
ui_text = "- Fix issues displaying pixel art.\n"
|
||||
"- Force high-res games to look low-res.\n\n";
|
||||
#endif
|
||||
ui_label = "Pixel Grid Param";
|
||||
ui_tooltip = "Switch between using Pixel Size or Num Pixels";
|
||||
ui_type = "combo";
|
||||
ui_items = "Pixel Size\0"
|
||||
"Content Resolution\0";
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Pixelation";
|
||||
ui_category_closed = true;
|
||||
> = 0;
|
||||
|
||||
uniform float2 pixel_size <
|
||||
#if !HIDE_HELP_SECTIONS && !ADVANCED_SETTINGS
|
||||
ui_text = "- Fix issues displaying pixel art.\n"
|
||||
"- Force high-res games to look low-res.\n\n";
|
||||
#endif
|
||||
ui_label = "Pixel Size";
|
||||
ui_tooltip = "The size of an in-game pixel on screen, in real-world pixels";
|
||||
ui_type = "slider";
|
||||
ui_min = 1.0;
|
||||
ui_max = 30.0;
|
||||
ui_step = 1.0;
|
||||
|
||||
ui_category = "Pixelation";
|
||||
ui_category_closed = true;
|
||||
> = float2(1, 1);
|
||||
|
||||
uniform float2 pixel_grid_resolution <
|
||||
ui_label = "Num Pixels";
|
||||
ui_tooltip = "The number of in-game pixels displayed on-screen in each direction";
|
||||
ui_type = "drag";
|
||||
ui_min = 1.0;
|
||||
ui_max = 10000.0;
|
||||
ui_step = 1.0;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Pixelation";
|
||||
> = content_size;
|
||||
uniform float2 pixel_grid_offset <
|
||||
ui_label = "Pixel Grid Offset";
|
||||
ui_tooltip = "Shifts the pixel-grid to help with alignment";
|
||||
ui_type = "slider";
|
||||
ui_min = -15.0;
|
||||
ui_max = 15.0;
|
||||
ui_step = 1.0;
|
||||
|
||||
#if ADVANCED_SETTINGS
|
||||
ui_spacing = 2;
|
||||
#endif
|
||||
ui_category = "Pixelation";
|
||||
> = float2(0, 0);
|
||||
*/
|
||||
|
||||
// ==== SCANLINES ====
|
||||
uniform uint scanline_thickness <
|
||||
#if !HIDE_HELP_SECTIONS
|
||||
ui_text = "Configure the electron beams and interlacing.\n\n";
|
||||
#endif
|
||||
ui_label = "Scanline Thickness";
|
||||
ui_tooltip = "Sets the height of each scanline";
|
||||
ui_type = "slider";
|
||||
ui_min = 1;
|
||||
ui_max = 30;
|
||||
ui_step = 1;
|
||||
|
||||
ui_category = "Scanlines";
|
||||
ui_category_closed = true;
|
||||
> = 2;
|
||||
|
||||
uniform float scanline_offset <
|
||||
ui_label = "Scanline Offset";
|
||||
ui_tooltip = "Vertically shifts the scanlines to help with alignment";
|
||||
ui_type = "slider";
|
||||
ui_min = -30;
|
||||
ui_max = 30;
|
||||
ui_step = 1;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = 0;
|
||||
|
||||
uniform uint beam_shape_mode <
|
||||
ui_label = "Beam Shape Mode";
|
||||
ui_tooltip = "Select the kind of beam to use.";
|
||||
ui_type = "combo";
|
||||
ui_items = "Digital (Fast)\0"
|
||||
"Linear (Simple)\0"
|
||||
"Gaussian (Realistic)\0"
|
||||
"Multi-Source Gaussian (Expensive)\0";
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = 1;
|
||||
|
||||
uniform bool enable_interlacing <
|
||||
ui_label = "Enable Interlacing";
|
||||
|
||||
ui_spacing = 5;
|
||||
ui_category = "Scanlines";
|
||||
> = false;
|
||||
|
||||
uniform bool interlace_back_field_first <
|
||||
ui_label = "Draw Back-Field First";
|
||||
ui_tooltip = "Draw odd-numbered scanlines first (often has no effect)";
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = interlace_back_field_first_static;
|
||||
|
||||
uniform uint scanline_deinterlacing_mode <
|
||||
ui_label = "Deinterlacing Mode";
|
||||
ui_tooltip = "Selects the deinterlacing algorithm, if any.";
|
||||
ui_type = "combo";
|
||||
ui_items = "None\0"
|
||||
"Fake-Progressive\0"
|
||||
"Weaving\0"
|
||||
"Blended Weaving\0";
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = 1;
|
||||
|
||||
uniform float deinterlacing_blend_gamma <
|
||||
ui_label = "Deinterlacing Blend Gamma";
|
||||
ui_tooltip = "Nudge this if deinterlacing changes your colors too much";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.01;
|
||||
ui_max = 5.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = 1.0;
|
||||
|
||||
uniform float linear_beam_thickness <
|
||||
ui_label = "Linear Beam Thickness";
|
||||
ui_tooltip = "Linearly widens or narrows the beam";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.01;
|
||||
ui_max = 3.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_spacing = 5;
|
||||
ui_category = "Scanlines";
|
||||
> = 1.0;
|
||||
|
||||
uniform float gaussian_beam_min_sigma <
|
||||
ui_label = "Gaussian Beam Min Sigma";
|
||||
ui_tooltip = "For Gaussian Beam Shape, sets thickness of dim pixels";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_spacing = 5;
|
||||
ui_category = "Scanlines";
|
||||
> = gaussian_beam_min_sigma_static;
|
||||
|
||||
uniform float gaussian_beam_max_sigma <
|
||||
ui_label = "Gaussian Beam Max Sigma";
|
||||
ui_tooltip = "For Gaussian Beam Shape, sets thickness of bright pixels";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = gaussian_beam_max_sigma_static;
|
||||
|
||||
uniform float gaussian_beam_spot_power <
|
||||
ui_label = "Gaussian Beam Spot Power";
|
||||
ui_tooltip = "For Gaussian Beam Shape, balances between Min and Max Sigma";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = gaussian_beam_spot_power_static;
|
||||
|
||||
uniform float gaussian_beam_min_shape <
|
||||
ui_label = "Gaussian Beam Min Shape";
|
||||
ui_tooltip = "For Gaussian Beam Shape, sets sharpness of dim pixels";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Scanlines";
|
||||
> = gaussian_beam_min_shape_static;
|
||||
|
||||
uniform float gaussian_beam_max_shape <
|
||||
ui_label = "Gaussian Beam Max Shape";
|
||||
ui_tooltip = "For Gaussian Beam Shape, sets sharpness of bright pixels";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = gaussian_beam_max_shape_static;
|
||||
|
||||
uniform float gaussian_beam_shape_power <
|
||||
ui_label = "Gaussian Beam Shape Power";
|
||||
ui_tooltip = "For Gaussian Beam Shape, balances between Min and Max Shape";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Scanlines";
|
||||
> = gaussian_beam_shape_power_static;
|
||||
|
||||
uniform float3 convergence_offset_x <
|
||||
ui_label = "Convergence Offset X RGB";
|
||||
ui_tooltip = "Shift the color channels horizontally";
|
||||
ui_type = "drag";
|
||||
ui_min = -10;
|
||||
ui_max = 10;
|
||||
ui_step = 0.05;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_spacing = 5;
|
||||
ui_category = "Scanlines";
|
||||
> = 0;
|
||||
uniform float3 convergence_offset_y <
|
||||
ui_label = "Convergence Offset Y RGB";
|
||||
ui_tooltip = "Shift the color channels vertically";
|
||||
ui_type = "drag";
|
||||
ui_min = -10;
|
||||
ui_max = 10;
|
||||
ui_step = 0.05;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
ui_category = "Scanlines";
|
||||
> = 0;
|
||||
|
||||
static uint beam_horiz_filter = beam_horiz_filter_static;
|
||||
static float beam_horiz_sigma = beam_horiz_sigma_static;
|
||||
static float beam_horiz_linear_rgb_weight = beam_horiz_linear_rgb_weight_static;
|
||||
|
||||
// ==== IMAGE COLORIZATION ====
|
||||
uniform float crt_gamma <
|
||||
#if !HIDE_HELP_SECTIONS
|
||||
ui_text = "Apply gamma, contrast, and blurring.\n\n";
|
||||
#endif
|
||||
ui_label = "CRT Gamma";
|
||||
ui_tooltip = "The gamma-level of the original content";
|
||||
ui_type = "slider";
|
||||
ui_min = 1.0;
|
||||
ui_max = 5.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Colors and Effects";
|
||||
ui_category_closed = true;
|
||||
> = crt_gamma_static;
|
||||
|
||||
uniform float lcd_gamma <
|
||||
ui_label = "LCD Gamma";
|
||||
ui_tooltip = "The gamma-level of your display";
|
||||
ui_type = "slider";
|
||||
ui_min = 1.0;
|
||||
ui_max = 5.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Colors and Effects";
|
||||
> = lcd_gamma_static;
|
||||
|
||||
uniform float levels_contrast <
|
||||
ui_label = "Levels Contrast";
|
||||
ui_tooltip = "Sets the contrast of the CRT";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.0;
|
||||
ui_max = 4.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_spacing = 5;
|
||||
ui_category = "Colors and Effects";
|
||||
> = levels_contrast_static;
|
||||
|
||||
uniform float halation_weight <
|
||||
ui_label = "Halation";
|
||||
ui_tooltip = "Desaturation due to eletrons exciting the wrong phosphors";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Colors and Effects";
|
||||
> = halation_weight_static;
|
||||
|
||||
uniform float diffusion_weight <
|
||||
ui_label = "Diffusion";
|
||||
ui_tooltip = "Blurring due to refraction from the screen's glass";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Colors and Effects";
|
||||
> = diffusion_weight_static;
|
||||
|
||||
uniform float blur_radius <
|
||||
ui_label = "Blur Radius";
|
||||
ui_tooltip = "Scales the radius of the halation and diffusion effects";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.01;
|
||||
ui_max = 5.0;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Colors and Effects";
|
||||
> = 1.0;
|
||||
|
||||
uniform float bloom_underestimate_levels <
|
||||
ui_label = "Bloom Underestimation";
|
||||
ui_tooltip = "Scale the bloom effect's intensity";
|
||||
ui_type = "drag";
|
||||
ui_min = FIX_ZERO(0.0);
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Colors and Effects";
|
||||
> = bloom_underestimate_levels_static;
|
||||
|
||||
uniform float bloom_excess <
|
||||
ui_label = "Bloom Excess";
|
||||
ui_tooltip = "Extra bloom applied to all colors";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Colors and Effects";
|
||||
> = bloom_excess_static;
|
||||
|
||||
uniform float2 aa_subpixel_r_offset_runtime <
|
||||
ui_label = "AA Subpixel R Offet XY";
|
||||
ui_type = "drag";
|
||||
ui_min = -0.5;
|
||||
ui_max = 0.5;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS || !_RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS;
|
||||
|
||||
ui_category = "Colors and Effects";
|
||||
> = aa_subpixel_r_offset_static;
|
||||
|
||||
static const float aa_cubic_c = aa_cubic_c_static;
|
||||
static const float aa_gauss_sigma = aa_gauss_sigma_static;
|
||||
|
||||
|
||||
// ==== GEOMETRY ====
|
||||
uniform uint geom_rotation_mode <
|
||||
#if !HIDE_HELP_SECTIONS
|
||||
ui_text = "Change the geometry of the screen's glass.\n\n";
|
||||
#endif
|
||||
ui_label = "Rotate Screen";
|
||||
ui_type = "combo";
|
||||
ui_items = "0 degrees\0"
|
||||
"90 degrees\0"
|
||||
"180 degrees\0"
|
||||
"270 degrees\0";
|
||||
|
||||
ui_category = "Screen Geometry";
|
||||
ui_category_closed = true;
|
||||
> = 0;
|
||||
uniform uint geom_mode_runtime <
|
||||
ui_label = "Geometry Mode";
|
||||
ui_tooltip = "Select screen curvature type";
|
||||
ui_type = "combo";
|
||||
ui_items = "Flat\0"
|
||||
"Spherical\0"
|
||||
"Spherical (Alt)\0"
|
||||
"Cylindrical (Trinitron)\0";
|
||||
|
||||
ui_category = "Screen Geometry";
|
||||
> = geom_mode_static;
|
||||
|
||||
uniform float geom_radius <
|
||||
ui_label = "Geometry Radius";
|
||||
ui_tooltip = "Select screen curvature radius";
|
||||
ui_type = "slider";
|
||||
ui_min = 1.0 / (2.0 * pi);
|
||||
ui_max = 1024;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Screen Geometry";
|
||||
> = geom_radius_static;
|
||||
|
||||
uniform float geom_view_dist <
|
||||
ui_label = "View Distance";
|
||||
ui_type = "slider";
|
||||
ui_min = 0.5;
|
||||
ui_max = 1024;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Screen Geometry";
|
||||
> = geom_view_dist_static;
|
||||
|
||||
uniform float2 geom_tilt_angle <
|
||||
ui_label = "Screen Tilt Angles";
|
||||
ui_type = "drag";
|
||||
ui_min = -pi;
|
||||
ui_max = pi;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Screen Geometry";
|
||||
> = geom_tilt_angle_static;
|
||||
|
||||
uniform float2 geom_aspect_ratio <
|
||||
ui_label = "Screen Aspect Ratios";
|
||||
ui_type = "drag";
|
||||
ui_min = 1.0;
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_category = "Screen Geometry";
|
||||
> = float2(geom_aspect_ratio_static, 1);
|
||||
uniform float2 geom_overscan <
|
||||
ui_label = "Geom Overscan";
|
||||
ui_type = "drag";
|
||||
ui_min = FIX_ZERO(0.0);
|
||||
ui_step = 0.01;
|
||||
hidden = !ADVANCED_SETTINGS;
|
||||
|
||||
ui_spacing = 2;
|
||||
ui_category = "Screen Geometry";
|
||||
> = geom_overscan_static;
|
||||
|
||||
// ==== BORDER ====
|
||||
uniform float border_size <
|
||||
#if !HIDE_HELP_SECTIONS
|
||||
ui_text = "Apply a thin vignette to the edge of the screen.\n\n";
|
||||
#endif
|
||||
ui_label = "Border Size";
|
||||
ui_category_closed = true;
|
||||
ui_type = "slider";
|
||||
ui_min = 0.0;
|
||||
ui_max = 0.5;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Screen Border";
|
||||
> = border_size_static;
|
||||
|
||||
uniform float border_darkness <
|
||||
ui_label = "Border Darkness";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Screen Border";
|
||||
> = border_darkness_static;
|
||||
|
||||
uniform float border_compress <
|
||||
ui_label = "Border Compress";
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_step = 0.01;
|
||||
|
||||
ui_category = "Screen Border";
|
||||
> = border_compress_static;
|
||||
|
||||
// ==== PREBLUR ====
|
||||
#if ENABLE_PREBLUR
|
||||
uniform float2 preblur_effect_radius <
|
||||
#if !HIDE_HELP_SECTIONS
|
||||
ui_text = "- Apply a linear blur to the input image. Kind of like an NTSC/Composite shader, but much faster.\n"
|
||||
"- If you want to use an NTSC shader or don't like this effect, disable it by setting ENABLE_PREBLUR to 0\n"
|
||||
"- If you leave all of these set to 0, then they don't do anything. Consider disabling the effect to improve performance.\n\n";
|
||||
#endif
|
||||
ui_type = "drag";
|
||||
ui_min = 0;
|
||||
ui_max = 100;
|
||||
ui_step = 1;
|
||||
ui_label = "Effect Radius XY";
|
||||
ui_tooltip = "The radius of the effect visible on the screen (measured in pixels)";
|
||||
|
||||
ui_category = "Pre-Blur";
|
||||
ui_category_closed = true;
|
||||
> = 0;
|
||||
uniform uint2 preblur_sampling_radius <
|
||||
ui_type = "drag";
|
||||
ui_min = 0;
|
||||
ui_max = 100;
|
||||
ui_step = 1;
|
||||
ui_label = "Sampling Radius XY";
|
||||
ui_tooltip = "The number of samples to take on either side of each pixel";
|
||||
|
||||
ui_category = "Pre-Blur";
|
||||
> = 0;
|
||||
#else
|
||||
static const float2 preblur_effect_radius = 0;
|
||||
static const uint2 preblur_sampling_radius = 0;
|
||||
#endif
|
||||
|
||||
// Provide accessors for vector constants that pack scalar uniforms:
|
||||
float2 get_aspect_vector(const float geom_aspect_ratio)
|
||||
{
|
||||
// Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
|
||||
// the absolute scale from affecting the uv-mapping for curvature:
|
||||
const float geom_clamped_aspect_ratio =
|
||||
min(geom_aspect_ratio, geom_max_aspect_ratio);
|
||||
const float2 geom_aspect =
|
||||
normalize(float2(geom_clamped_aspect_ratio, 1.0));
|
||||
return geom_aspect;
|
||||
}
|
||||
|
||||
float2 get_geom_overscan_vector()
|
||||
{
|
||||
return geom_overscan;
|
||||
}
|
||||
|
||||
float2 get_geom_tilt_angle_vector()
|
||||
{
|
||||
return geom_tilt_angle;
|
||||
}
|
||||
|
||||
float3 get_convergence_offsets_x_vector()
|
||||
{
|
||||
return convergence_offset_x;
|
||||
}
|
||||
|
||||
float3 get_convergence_offsets_y_vector()
|
||||
{
|
||||
return convergence_offset_y;
|
||||
}
|
||||
|
||||
float2 get_convergence_offsets_r_vector()
|
||||
{
|
||||
return float2(convergence_offset_x.r, convergence_offset_y.r);
|
||||
}
|
||||
|
||||
float2 get_convergence_offsets_g_vector()
|
||||
{
|
||||
return float2(convergence_offset_x.g, convergence_offset_y.g);
|
||||
}
|
||||
|
||||
float2 get_convergence_offsets_b_vector()
|
||||
{
|
||||
return float2(convergence_offset_x.b, convergence_offset_y.b);
|
||||
}
|
||||
|
||||
float2 get_aa_subpixel_r_offset()
|
||||
{
|
||||
#if _RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#if _RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// WARNING: THIS IS EXTREMELY EXPENSIVE.
|
||||
return aa_subpixel_r_offset_runtime;
|
||||
#else
|
||||
return aa_subpixel_r_offset_static;
|
||||
#endif
|
||||
#else
|
||||
return aa_subpixel_r_offset_static;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Provide accessors settings which still need "cooking:"
|
||||
float get_mask_amplify()
|
||||
{
|
||||
static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
|
||||
static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
|
||||
static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
|
||||
|
||||
float mask_amplify;
|
||||
[flatten]
|
||||
switch (mask_type) {
|
||||
case 0:
|
||||
mask_amplify = mask_grille_amplify;
|
||||
break;
|
||||
case 1:
|
||||
mask_amplify = mask_slot_amplify;
|
||||
break;
|
||||
case 2:
|
||||
mask_amplify = mask_shadow_amplify;
|
||||
break;
|
||||
case 3:
|
||||
mask_amplify = mask_grille_amplify;
|
||||
break;
|
||||
case 4:
|
||||
mask_amplify = mask_slot_amplify;
|
||||
break;
|
||||
default:
|
||||
mask_amplify = mask_shadow_amplify;
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
return mask_amplify;
|
||||
}
|
||||
|
||||
#endif // _BIND_SHADER_PARAMS_H
|
@ -0,0 +1,320 @@
|
||||
#ifndef _BLOOM_FUNCTIONS_H
|
||||
#define _BLOOM_FUNCTIONS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// These utility functions and constants help several passes determine the
|
||||
// size and center texel weight of the phosphor bloom in a uniform manner.
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
// We need to calculate the correct blur sigma using some .cgp constants:
|
||||
//#include "../user-settings.h"
|
||||
|
||||
|
||||
#include "user-settings.fxh"
|
||||
#include "derived-settings-and-constants.fxh"
|
||||
#include "bind-shader-params.fxh"
|
||||
#include "blur-functions.fxh"
|
||||
|
||||
/////////////////////////////// BLOOM CONSTANTS //////////////////////////////
|
||||
|
||||
// Compute constants with manual inlines of the functions below:
|
||||
static const float bloom_diff_thresh = 1.0/256.0;
|
||||
|
||||
|
||||
|
||||
/////////////////////////////////// HELPERS //////////////////////////////////
|
||||
|
||||
float get_min_sigma_to_blur_triad(const float triad_size,
|
||||
const float thresh)
|
||||
{
|
||||
// Requires: 1.) triad_size is the final phosphor triad size in pixels
|
||||
// 2.) thresh is the max desired pixel difference in the
|
||||
// blurred triad (e.g. 1.0/256.0).
|
||||
// Returns: Return the minimum sigma that will fully blur a phosphor
|
||||
// triad on the screen to an even color, within thresh.
|
||||
// This closed-form function was found by curve-fitting data.
|
||||
// Estimate: max error = ~0.086036, mean sq. error = ~0.0013387:
|
||||
return -0.05168 + 0.6113*triad_size -
|
||||
1.122*triad_size*sqrt(0.000416 + thresh);
|
||||
// Estimate: max error = ~0.16486, mean sq. error = ~0.0041041:
|
||||
//return 0.5985*triad_size - triad_size*sqrt(thresh)
|
||||
}
|
||||
|
||||
float get_absolute_scale_blur_sigma(const float thresh)
|
||||
{
|
||||
// Requires: 1.) min_expected_triads must be a global float. The number
|
||||
// of horizontal phosphor triads in the final image must be
|
||||
// >= min_allowed_viewport_triads.x for realistic results.
|
||||
// 2.) bloom_approx_scale_x must be a global float equal to the
|
||||
// absolute horizontal scale of BLOOM_APPROX.
|
||||
// 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x
|
||||
// should be <= 1.1658025090 to keep the final result <
|
||||
// 0.62666015625 (the largest sigma ensuring the largest
|
||||
// unused texel weight stays < 1.0/256.0 for a 3x3 blur).
|
||||
// 4.) thresh is the max desired pixel difference in the
|
||||
// blurred triad (e.g. 1.0/256.0).
|
||||
// Returns: Return the minimum Gaussian sigma that will blur the pass
|
||||
// output as much as it would have taken to blur away
|
||||
// bloom_approx_scale_x horizontal phosphor triads.
|
||||
// Description:
|
||||
// BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd
|
||||
// use the same blur sigma as the actual phosphor bloom and scale it down
|
||||
// to the current resolution with (bloom_approx_scale_x/viewport_size_x), but
|
||||
// we don't know the viewport size in this pass. Instead, we'll blur as
|
||||
// much as it would take to blur away min_allowed_viewport_triads.x. This
|
||||
// will blur "more than necessary" if the user actually uses more triads,
|
||||
// but that's not terrible either, because blurring a constant fraction of
|
||||
// the viewport may better resemble a true optical bloom anyway (since the
|
||||
// viewport will generally be about the same fraction of each player's
|
||||
// field of view, regardless of screen size and resolution).
|
||||
// Assume an extremely large viewport size for asymptotic results.
|
||||
return bloom_approx_scale_x/max_viewport_size_x *
|
||||
get_min_sigma_to_blur_triad(
|
||||
max_viewport_size_x/min_allowed_viewport_triads.x, thresh);
|
||||
}
|
||||
|
||||
float get_center_weight(const float sigma)
|
||||
{
|
||||
// Given a Gaussian blur sigma, get the blur weight for the center texel.
|
||||
#if _RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
return get_fast_gaussian_weight_sum_inv(sigma);
|
||||
#else
|
||||
const float denom_inv = 0.5/(sigma*sigma);
|
||||
const float w0 = 1.0;
|
||||
const float w1 = exp(-1.0 * denom_inv);
|
||||
const float w2 = exp(-4.0 * denom_inv);
|
||||
const float w3 = exp(-9.0 * denom_inv);
|
||||
const float w4 = exp(-16.0 * denom_inv);
|
||||
const float w5 = exp(-25.0 * denom_inv);
|
||||
const float w6 = exp(-36.0 * denom_inv);
|
||||
const float w7 = exp(-49.0 * denom_inv);
|
||||
const float w8 = exp(-64.0 * denom_inv);
|
||||
const float w9 = exp(-81.0 * denom_inv);
|
||||
const float w10 = exp(-100.0 * denom_inv);
|
||||
const float w11 = exp(-121.0 * denom_inv);
|
||||
const float w12 = exp(-144.0 * denom_inv);
|
||||
const float w13 = exp(-169.0 * denom_inv);
|
||||
const float w14 = exp(-196.0 * denom_inv);
|
||||
const float w15 = exp(-225.0 * denom_inv);
|
||||
const float w16 = exp(-256.0 * denom_inv);
|
||||
const float w17 = exp(-289.0 * denom_inv);
|
||||
const float w18 = exp(-324.0 * denom_inv);
|
||||
const float w19 = exp(-361.0 * denom_inv);
|
||||
const float w20 = exp(-400.0 * denom_inv);
|
||||
const float w21 = exp(-441.0 * denom_inv);
|
||||
// Note: If the implementation uses a smaller blur than the max allowed,
|
||||
// the worst case scenario is that the center weight will be overestimated,
|
||||
// so we'll put a bit more energy into the brightpass...no huge deal.
|
||||
// Then again, if the implementation uses a larger blur than the max
|
||||
// "allowed" because of dynamic branching, the center weight could be
|
||||
// underestimated, which is more of a problem...consider always using
|
||||
#if PHOSPHOR_BLOOM_TRIAD_SIZE_MODE >= _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// 43x blur:
|
||||
const float weight_sum_inv = 1.0 /
|
||||
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 +
|
||||
w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
|
||||
#else
|
||||
#if PHOSPHOR_BLOOM_TRIAD_SIZE_MODE >= _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
// 31x blur:
|
||||
const float weight_sum_inv = 1.0 /
|
||||
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 +
|
||||
w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15));
|
||||
#else
|
||||
#if PHOSPHOR_BLOOM_TRIAD_SIZE_MODE >= _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
// 25x blur:
|
||||
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||||
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
|
||||
#else
|
||||
#if PHOSPHOR_BLOOM_TRIAD_SIZE_MODE >= _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
// 17x blur:
|
||||
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||||
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
|
||||
#else
|
||||
// 9x blur:
|
||||
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
|
||||
#endif // _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
#endif // _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
#endif // _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
#endif // _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
const float center_weight = weight_sum_inv * weight_sum_inv;
|
||||
return center_weight;
|
||||
#endif
|
||||
}
|
||||
|
||||
float3 tex2DblurNfast(const sampler2D tex, const float2 tex_uv,
|
||||
const float2 dxdy, const float sigma,
|
||||
const float input_gamma)
|
||||
{
|
||||
// If sigma is static, we can safely branch and use the smallest blur
|
||||
// that's big enough. Ignore #define hints, because we'll only use a
|
||||
// large blur if we actually need it, and the branches cost nothing.
|
||||
#if !_RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
#else
|
||||
// It's still worth branching if the profile supports dynamic branches:
|
||||
// It's much faster than using a hugely excessive blur, but each branch
|
||||
// eats ~1% FPS.
|
||||
#if _DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
#endif
|
||||
#endif
|
||||
// Failed optimization notes:
|
||||
// I originally created a same-size mipmapped 5-tap separable blur10 that
|
||||
// could handle any sigma by reaching into lower mip levels. It was
|
||||
// as fast as blur25fast for runtime sigmas and a tad faster than
|
||||
// blur31fast for static sigmas, but mipmapping two viewport-size passes
|
||||
// ate 10% of FPS across all codepaths, so it wasn't worth it.
|
||||
#ifdef PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
if(sigma <= blur9_std_dev)
|
||||
{
|
||||
return tex2Dblur9fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
}
|
||||
else if(sigma <= blur17_std_dev)
|
||||
{
|
||||
return tex2Dblur17fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
}
|
||||
else if(sigma <= blur25_std_dev)
|
||||
{
|
||||
return tex2Dblur25fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
}
|
||||
else if(sigma <= blur31_std_dev)
|
||||
{
|
||||
return tex2Dblur31fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
}
|
||||
else
|
||||
{
|
||||
return tex2Dblur43fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
}
|
||||
#else
|
||||
// If we can't afford to branch, we can only guess at what blur
|
||||
// size we need. Therefore, use the largest blur allowed.
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
return tex2Dblur43fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
return tex2Dblur31fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
return tex2Dblur25fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
#else
|
||||
#if PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
return tex2Dblur17fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
#else
|
||||
return tex2Dblur9fast(tex, tex_uv, dxdy, sigma, input_gamma);
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
}
|
||||
|
||||
float get_bloom_approx_sigma(const float output_size_x_runtime,
|
||||
const float estimated_viewport_size_x)
|
||||
{
|
||||
// Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x.
|
||||
// This is included for dynamic codepaths just in case the
|
||||
// following two globals are incorrect:
|
||||
// 2.) bloom_approx_size_x_for_skip should == the same
|
||||
// if PHOSPHOR_BLOOM_FAKE is #defined
|
||||
// 3.) bloom_approx_size_x should == the same otherwise
|
||||
// Returns: For gaussian4x4, return a dynamic small bloom sigma that's
|
||||
// as close to optimal as possible given available information.
|
||||
// For blur3x3, return the a static small bloom sigma that
|
||||
// works well for typical cases. Otherwise, we're using simple
|
||||
// bilinear filtering, so use static calculations.
|
||||
// Assume the default static value. This is a compromise that ensures
|
||||
// typical triads are blurred, even if unusually large ones aren't.
|
||||
static const float mask_num_triads_static =
|
||||
max(min_allowed_viewport_triads.x, mask_num_triads_across_static);
|
||||
const float mask_num_triads_from_size =
|
||||
estimated_viewport_size_x/mask_triad_width;
|
||||
const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x,
|
||||
lerp(mask_num_triads_from_size, mask_num_triads_across,
|
||||
mask_size_param));
|
||||
// Assume an extremely large viewport size for asymptotic results:
|
||||
static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
|
||||
if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize
|
||||
{
|
||||
// Use the runtime num triads and output size:
|
||||
const float asymptotic_triad_size =
|
||||
max_viewport_size_x/mask_num_triads_runtime;
|
||||
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
|
||||
asymptotic_triad_size, bloom_diff_thresh);
|
||||
const float bloom_approx_sigma =
|
||||
asymptotic_sigma * output_size_x_runtime/max_viewport_size_x;
|
||||
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
|
||||
// account for the Gaussian scanline sigma from the last pass too.
|
||||
// The bloom will be too wide horizontally but tall enough vertically.
|
||||
return length(float2(bloom_approx_sigma, gaussian_beam_max_sigma));
|
||||
}
|
||||
else // 3x3 blur resize (the bilinear resize doesn't need a sigma)
|
||||
{
|
||||
// We're either using blur3x3 or bilinear filtering. The biggest
|
||||
// reason to choose blur3x3 is to avoid dynamic weights, so use a
|
||||
// static calculation.
|
||||
#ifdef PHOSPHOR_BLOOM_FAKE
|
||||
static const float output_size_x_static =
|
||||
bloom_approx_size_x_for_fake;
|
||||
#else
|
||||
static const float output_size_x_static = bloom_approx_size_x;
|
||||
#endif
|
||||
static const float asymptotic_triad_size =
|
||||
max_viewport_size_x/mask_num_triads_static;
|
||||
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
|
||||
asymptotic_triad_size, bloom_diff_thresh);
|
||||
const float bloom_approx_sigma =
|
||||
asymptotic_sigma * output_size_x_static/max_viewport_size_x;
|
||||
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
|
||||
// try accounting for the Gaussian scanline sigma from the last pass
|
||||
// too; use the static default value:
|
||||
return length(float2(bloom_approx_sigma, gaussian_beam_max_sigma_static));
|
||||
}
|
||||
}
|
||||
|
||||
float get_final_bloom_sigma(const float bloom_sigma_runtime)
|
||||
{
|
||||
// Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's
|
||||
// optimal for the [known] triad size.
|
||||
// 2.) Call this from a fragment shader (not a vertex shader),
|
||||
// or blurring with static sigmas won't be constant-folded.
|
||||
// Returns: Return the optimistic static sigma if the triad size is
|
||||
// known at compile time. Otherwise return the optimal runtime
|
||||
// sigma (10% slower) or an implementation-specific compromise
|
||||
// between an optimistic or pessimistic static sigma.
|
||||
// Notes: Call this from the fragment shader, NOT the vertex shader,
|
||||
// so static sigmas can be constant-folded!
|
||||
const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad(
|
||||
mask_triad_width_static, bloom_diff_thresh);
|
||||
#if _RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
return bloom_sigma_runtime;
|
||||
#else
|
||||
// Overblurring looks as bad as underblurring, so assume average-size
|
||||
// triads, not worst-case huge triads:
|
||||
return bloom_sigma_optimistic;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#endif // _BLOOM_FUNCTIONS_H
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,405 @@
|
||||
#ifndef _DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
#define _DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
|
||||
#include "helper-functions-and-macros.fxh"
|
||||
#include "user-settings.fxh"
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// crt-royale-reshade: A port of TroggleMonkey's crt-royale from libretro to ReShade.
|
||||
// Copyright (C) 2020 Alex Gunter <akg7634@gmail.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// These macros and constants can be used across the whole codebase.
|
||||
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
||||
|
||||
|
||||
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
||||
|
||||
//#include "../user-settings.h"
|
||||
|
||||
//#include "user-cgp-constants.h"
|
||||
|
||||
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
|
||||
|
||||
#ifndef _USER_CGP_CONSTANTS_H
|
||||
#define _USER_CGP_CONSTANTS_H
|
||||
|
||||
// IMPORTANT:
|
||||
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
||||
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
||||
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
||||
// set directly in the .cgp file to make things easier, but...they can't.
|
||||
|
||||
// PASS SCALES AND RELATED CONSTANTS:
|
||||
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
||||
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
||||
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
||||
static const float bloom_approx_scale_x = 4.0 / 3.0;
|
||||
static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
|
||||
static const float bloom_diff_thresh_ = 1.0/256.0;
|
||||
|
||||
static const float bloom_approx_size_x = 320.0;
|
||||
static const float bloom_approx_size_x_for_fake = 400.0;
|
||||
// Copy the viewport-relative scales of the phosphor mask resize passes
|
||||
// (MASK_RESIZE and the pass immediately preceding it):
|
||||
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
|
||||
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
||||
static const float geom_max_aspect_ratio = 4.0/3.0;
|
||||
|
||||
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
||||
// Set the following constants to reflect the properties of the phosphor mask
|
||||
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
||||
// based on user settings, then repeats a single tile until filling the screen.
|
||||
// The shader must know the input texture size (default 64x64), and to manually
|
||||
// resize, it must also know the horizontal triads per tile (default 8).
|
||||
static const float2 mask_texture_small_size = float2(64.0, 64.0);
|
||||
static const float2 mask_texture_large_size = float2(512.0, 512.0);
|
||||
static const float mask_triads_per_tile = 8.0;
|
||||
// We need the average brightness of the phosphor mask to compensate for the
|
||||
// dimming it causes. The following four values are roughly correct for the
|
||||
// masks included with the shader. Update the value for any LUT texture you
|
||||
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
||||
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
||||
// #ifndef PHOSPHOR_MASK_GRILLE14
|
||||
// #define PHOSPHOR_MASK_GRILLE14 0
|
||||
// #endif
|
||||
static const float mask_grille14_avg_color = 50.6666666/255.0;
|
||||
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
||||
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
||||
static const float mask_grille15_avg_color = 53.0/255.0;
|
||||
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
||||
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
||||
static const float mask_slot_avg_color = 46.0/255.0;
|
||||
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
||||
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
||||
static const float mask_shadow_avg_color = 41.0/255.0;
|
||||
// TileableLinearShadowMask*.png
|
||||
// TileableLinearShadowMaskEDP*.png
|
||||
|
||||
// #if PHOSPHOR_MASK_GRILLE14
|
||||
// static const float mask_grille_avg_color = mask_grille14_avg_color;
|
||||
// #else
|
||||
static const float mask_grille_avg_color = mask_grille15_avg_color;
|
||||
// #endif
|
||||
|
||||
|
||||
#endif // _USER_CGP_CONSTANTS_H
|
||||
|
||||
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
|
||||
|
||||
//////////////////////////////// END INCLUDES ////////////////////////////////
|
||||
|
||||
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
||||
|
||||
|
||||
|
||||
#define _SIMULATE_CRT_ON_LCD 1
|
||||
#define _SIMULATE_GBA_ON_LCD 2
|
||||
#define _SIMULATE_LCD_ON_CRT 3
|
||||
#define _SIMULATE_GBA_ON_CRT 4
|
||||
|
||||
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
||||
#define GAMMA_SIMULATION_MODE _SIMULATE_CRT_ON_LCD
|
||||
|
||||
// Manually tiling a manually resized texture creates texture coord derivative
|
||||
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
||||
// seams in the phosphor mask. Workarounds:
|
||||
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
||||
// downgraded to tex2Dbias without _DRIVERS_ALLOW_TEX2DLOD #defined and
|
||||
// disabled without _DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
||||
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
||||
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
||||
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
||||
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
||||
// border padding to the resized mask FBO, but it works with same-pass
|
||||
// curvature. It's disabled without _DRIVERS_ALLOW_DERIVATIVES #defined.
|
||||
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
||||
// #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD 1 // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
||||
// #endif
|
||||
// #ifndef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE 1 // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
||||
// #endif
|
||||
// #ifndef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES 1 // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
||||
// #endif
|
||||
// Also, manually resampling the phosphor mask is slightly blurrier with
|
||||
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
||||
// creates artifacts, but only with the fully bloomed shader.) The difference
|
||||
// is subtle with small triads, but you can fix it for a small cost.
|
||||
// #ifndef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD 0
|
||||
// #endif
|
||||
|
||||
|
||||
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
||||
|
||||
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
||||
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
||||
// incompatible settings ASAP. (_INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
||||
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
||||
// current .cg pass.)
|
||||
#if _INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
#if _PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#undef _PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#define _PHOSPHOR_MASK_MANUALLY_RESIZE 0
|
||||
#endif
|
||||
#if _RUNTIME_GEOMETRY_MODE
|
||||
#undef _RUNTIME_GEOMETRY_MODE
|
||||
#define _RUNTIME_GEOMETRY_MODE 0
|
||||
#endif
|
||||
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
||||
// inferior in most cases, so replace 2.0 with 0.0:
|
||||
static const float bloom_approx_filter = macro_cond(
|
||||
bloom_approx_filter_static > 1.5,
|
||||
0.0,
|
||||
bloom_approx_filter_static
|
||||
);
|
||||
#else
|
||||
static const float bloom_approx_filter = bloom_approx_filter_static;
|
||||
#endif
|
||||
|
||||
// Disable slow runtime paths if static parameters are used. Most of these
|
||||
// won't be a problem anyway once the params are disabled, but some will.
|
||||
#if !_RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#if _RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#undef _RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#define _RUNTIME_PHOSPHOR_BLOOM_SIGMA 0
|
||||
#endif
|
||||
#if _RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#undef _RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#define _RUNTIME_ANTIALIAS_WEIGHTS 0
|
||||
#endif
|
||||
#if _RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#undef _RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#define _RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS 0
|
||||
#endif
|
||||
#if _RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#undef _RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define _RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE 0
|
||||
#endif
|
||||
#if _RUNTIME_GEOMETRY_TILT
|
||||
#undef _RUNTIME_GEOMETRY_TILT
|
||||
#define _RUNTIME_GEOMETRY_TILT 0
|
||||
#endif
|
||||
#if _RUNTIME_GEOMETRY_MODE
|
||||
#undef _RUNTIME_GEOMETRY_MODE
|
||||
#define _RUNTIME_GEOMETRY_MODE 0
|
||||
#endif
|
||||
// #if FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
// #undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
// #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT 0
|
||||
// #endif
|
||||
#endif
|
||||
|
||||
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
// #endif
|
||||
// #if ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
// #endif
|
||||
// Rule out unavailable anisotropic compatibility strategies:
|
||||
#if !_DRIVERS_ALLOW_DERIVATIVES
|
||||
// #if ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES 0
|
||||
// #endif
|
||||
#endif
|
||||
// #if !_DRIVERS_ALLOW_TEX2DLOD
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD 0
|
||||
// #endif
|
||||
// #if ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// #define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD 0
|
||||
// #endif
|
||||
// #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
||||
// #undef ANTIALIAS_DISABLE_ANISOTROPIC
|
||||
// #endif
|
||||
// #endif
|
||||
// #if !_DRIVERS_ALLOW_TEX2DBIAS
|
||||
// #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
// #endif
|
||||
// #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
// #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
// #endif
|
||||
// #endif
|
||||
// Prioritize anisotropic tiling compatibility strategies by performance and
|
||||
// disable unused strategies. This concentrates all the nesting in one place.
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
// #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
// #endif
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE 0
|
||||
// #endif
|
||||
// #if ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES 0
|
||||
// #endif
|
||||
// #else
|
||||
// #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE 0
|
||||
// #endif
|
||||
// #if ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES 0
|
||||
// #endif
|
||||
// #else
|
||||
// // ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
||||
// // flat texture coords in the same pass, but that's all we use.
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// #if ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// #define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES 0
|
||||
// #endif
|
||||
// #endif
|
||||
// #endif
|
||||
// #endif
|
||||
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
||||
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
// #endif
|
||||
// #ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
// #define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
// #endif
|
||||
// Prioritize anisotropic resampling compatibility strategies the same way:
|
||||
// #if ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// #ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
// #undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
// #endif
|
||||
// #endif
|
||||
|
||||
|
||||
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
||||
|
||||
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
||||
// should: It gives us more options for using fewer samples.
|
||||
// #if USE_LARGE_PHOSPHOR_MASK
|
||||
// #if ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// // TODO: Take advantage of this!
|
||||
// #define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
||||
// static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
||||
// #else
|
||||
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
||||
// #endif
|
||||
// #else
|
||||
// static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
||||
// #endif
|
||||
|
||||
static const float tile_aspect_inv = mask_resize_src_lut_size.y/mask_resize_src_lut_size.x;
|
||||
|
||||
|
||||
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
||||
// main_fragment, or a static alias of one of the above. This makes it hard
|
||||
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
||||
// global in the vertex shader or select a sampler2D in the vertex shader and
|
||||
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
||||
// because it just gives us the input texture or a black screen. However, we
|
||||
// can get around these limitations by calling tex2D three times with different
|
||||
// uniform samplers (or resizing the phosphor mask three times altogether).
|
||||
// With dynamic branches, we can process only one of these branches on top of
|
||||
// quickly discarding fragments we don't need (cgc seems able to overcome
|
||||
// limigations around dependent texture fetches inside of branches). Without
|
||||
// dynamic branches, we have to process every branch for every fragment...which
|
||||
// is slower. Runtime sampling mode selection is slower without dynamic
|
||||
// branches as well. Let the user's static #defines decide if it's worth it.
|
||||
#if _DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define _RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
// #else
|
||||
// #if FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
// #define _RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
// #endif
|
||||
#endif
|
||||
|
||||
// We need to render some minimum number of tiles in the resize passes.
|
||||
// We need at least 1.0 just to repeat a single tile, and we need extra
|
||||
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
||||
// antialiasing, same-pass curvature (not currently used), etc. First
|
||||
// determine how many border texels and tiles we need, based on how the result
|
||||
// will be sampled:
|
||||
#ifdef GEOMETRY_EARLY
|
||||
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
||||
// Most antialiasing filters have a base radius of 4.0 pixels:
|
||||
static const float max_aa_base_pixel_border = 4.0 +
|
||||
max_subpixel_offset;
|
||||
#else
|
||||
static const float max_aa_base_pixel_border = 0.0;
|
||||
#endif
|
||||
// Anisotropic filtering adds about 0.5 to the pixel border:
|
||||
// #ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
||||
// #else
|
||||
// static const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
||||
// #endif
|
||||
// Fixing discontinuities adds 1.0 more to the pixel border:
|
||||
// #if ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
// static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
||||
// #else
|
||||
static const float max_tiled_pixel_border = max_aniso_pixel_border;
|
||||
// #endif
|
||||
// Convert the pixel border to an integer texel border. Assume same-pass
|
||||
// curvature about triples the texel frequency:
|
||||
#ifdef GEOMETRY_EARLY
|
||||
#define max_mask_texel_border macro_ceil(max_tiled_pixel_border * 3.0f)
|
||||
#else
|
||||
#define max_mask_texel_border macro_ceil(max_tiled_pixel_border)
|
||||
#endif
|
||||
// Convert the texel border to a tile border using worst-case assumptions:
|
||||
static const float max_mask_tile_border = max_mask_texel_border/
|
||||
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
||||
|
||||
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
||||
// the starting texel (inside borders) for sampling it.
|
||||
#ifndef GEOMETRY_EARLY
|
||||
// #if ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// Special case: Render two tiles without borders. Anisotropic
|
||||
// filtering doesn't seem to be a problem here.
|
||||
// static const float mask_resize_num_tiles = 1.0 + 1.0;
|
||||
// static const float mask_start_texels = 0.0;
|
||||
// #else
|
||||
static const float mask_resize_num_tiles = 1.0 + 2.0 * max_mask_tile_border;
|
||||
static const float mask_start_texels = max_mask_texel_border;
|
||||
// #endif
|
||||
#else
|
||||
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
||||
static const float mask_start_texels = max_mask_texel_border;
|
||||
#endif
|
||||
|
||||
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
||||
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
||||
// Estimate the minimum number of triads we can split the screen into in each
|
||||
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
||||
static const float mask_resize_num_triads = mask_resize_num_tiles * mask_triads_per_tile;
|
||||
static const float2 min_allowed_viewport_triads =
|
||||
float2(mask_resize_num_triads, mask_resize_num_triads) / mask_resize_viewport_scale;
|
||||
|
||||
|
||||
|
||||
#endif // _DERIVED_SETTINGS_AND_CONSTANTS_H
|
@ -0,0 +1,84 @@
|
||||
#ifndef _DOWNSAMPLING_FUNCTIONS_H
|
||||
#define _DOWNSAMPLING_FUNCTIONS_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2020 Alex Gunter <akg7634@gmail.com>
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
float3 opaque_linear_downsample(
|
||||
const sampler2D tex,
|
||||
const float2 texcoord,
|
||||
const uint num_pairs,
|
||||
const float2 delta_uv
|
||||
) {
|
||||
const uint total_num_samples = num_pairs * 2 + 1;
|
||||
const float2 coord_left = texcoord - delta_uv * num_pairs;
|
||||
|
||||
float3 acc = 0;
|
||||
for(int i = 0; i < total_num_samples; i++) {
|
||||
const float2 coord = coord_left + i * delta_uv;
|
||||
acc += tex2D_nograd(tex, coord).rgb;
|
||||
}
|
||||
|
||||
return acc / total_num_samples;
|
||||
}
|
||||
|
||||
|
||||
float3 opaque_lanczos_downsample(
|
||||
const sampler2D tex,
|
||||
const float2 texcoord,
|
||||
const uint num_pairs,
|
||||
const float2 delta_uv,
|
||||
const float num_sinc_lobes,
|
||||
const float weight_at_center
|
||||
) {
|
||||
const uint total_num_samples = num_pairs * 2 + 1;
|
||||
const float2 coord_left = texcoord - delta_uv * num_pairs;
|
||||
const float sinc_dx = num_sinc_lobes / num_pairs; // 2 * num_sinc_lobes / (total_num_samples - 1)
|
||||
|
||||
float3 acc = 0;
|
||||
float w_sum = 0;
|
||||
for(int i = 0; i < total_num_samples; i++) {
|
||||
const float2 coord = coord_left + i * delta_uv;
|
||||
const float sinc_x = i * sinc_dx;
|
||||
|
||||
const float weight = (i != num_pairs) ?
|
||||
num_sinc_lobes * sin(pi*sinc_x) * sin(pi*sinc_x/num_sinc_lobes) / (pi*pi * sinc_x*sinc_x) :
|
||||
weight_at_center;
|
||||
|
||||
acc += weight * tex2D_nograd(tex, coord).rgb;
|
||||
w_sum += weight;
|
||||
}
|
||||
|
||||
return acc / w_sum;
|
||||
}
|
||||
|
||||
float3 opaque_lanczos_downsample(
|
||||
const sampler2D tex,
|
||||
const float2 texcoord,
|
||||
const uint num_pairs,
|
||||
const float2 delta_uv,
|
||||
const float num_sinc_lobes
|
||||
) {
|
||||
return opaque_lanczos_downsample(tex, texcoord, num_pairs, delta_uv, num_sinc_lobes, 1);
|
||||
}
|
||||
|
||||
#endif // _DOWNSAMPLING_FUNCTIONS_H
|
@ -0,0 +1,225 @@
|
||||
#ifndef _GAMMA_MANAGEMENT_H
|
||||
#define _GAMMA_MANAGEMENT_H
|
||||
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey
|
||||
// Copyright (C) 2020 Alex Gunter
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
#include "helper-functions-and-macros.fxh"
|
||||
|
||||
|
||||
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
|
||||
|
||||
// Set standard gamma constants, but allow users to override them:
|
||||
#ifndef OVERRIDE_STANDARD_GAMMA
|
||||
// Standard encoding gammas:
|
||||
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
|
||||
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
|
||||
// Typical device decoding gammas (only use for emulating devices):
|
||||
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
|
||||
// gammas: The standards purposely undercorrected for an analog CRT's
|
||||
// assumed 2.5 reference display gamma to maintain contrast in assumed
|
||||
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
|
||||
// These unstated assumptions about display gamma and perceptual rendering
|
||||
// intent caused a lot of confusion, and more modern CRT's seemed to target
|
||||
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
|
||||
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
|
||||
// displays designed to view sRGB in bright environments. (Standards are
|
||||
// also in flux again with BT.1886, but it's underspecified for displays.)
|
||||
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
|
||||
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
|
||||
static const float lcd_reference_gamma = 2.5; // To match CRT
|
||||
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
|
||||
static const float lcd_office_gamma = 2.2; // Approximates sRGB
|
||||
#endif // OVERRIDE_STANDARD_GAMMA
|
||||
|
||||
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
|
||||
// but only if they're aware of it.
|
||||
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
|
||||
static const bool assume_opaque_alpha = false;
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
|
||||
|
||||
// gamma-management.h should be compatible with overriding gamma values with
|
||||
// runtime user parameters, but we can only define other global constants in
|
||||
// terms of static constants, not uniform user parameters. To get around this
|
||||
// limitation, we need to define derived constants using functions.
|
||||
|
||||
// Set device gamma constants, but allow users to override them:
|
||||
#if _OVERRIDE_DEVICE_GAMMA
|
||||
// The user promises to globally define the appropriate constants:
|
||||
float get_crt_gamma() { return crt_gamma; }
|
||||
float get_gba_gamma() { return gba_gamma; }
|
||||
float get_lcd_gamma() { return lcd_gamma; }
|
||||
#else
|
||||
float get_crt_gamma() { return crt_reference_gamma_high; }
|
||||
float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
|
||||
float get_lcd_gamma() { return lcd_office_gamma; }
|
||||
#endif // _OVERRIDE_DEVICE_GAMMA
|
||||
|
||||
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
|
||||
#ifdef OVERRIDE_FINAL_GAMMA
|
||||
// The user promises to globally define the appropriate constants:
|
||||
float get_intermediate_gamma() { return intermediate_gamma; }
|
||||
float get_input_gamma() { return input_gamma; }
|
||||
float get_output_gamma() { return output_gamma; }
|
||||
#else
|
||||
// If we gamma-correct every pass, always use ntsc_gamma between passes to
|
||||
// ensure middle passes don't need to care if anything is being simulated:
|
||||
|
||||
// TODO: Figure out the correct way to configure this now that intermediate
|
||||
// FBOs all use get_intermediate_gamma() directly. Also refer to the
|
||||
// original code to confirm when a shader uses ntsc_gamma despite
|
||||
// GAMMA_ENCODE_EVERY_FBO being undefined.
|
||||
// float get_intermediate_gamma() { return ntsc_gamma; }
|
||||
float get_intermediate_gamma() { return 1.0; }
|
||||
|
||||
#if GAMMA_SIMULATION_MODE == _SIMULATE_CRT_ON_LCD
|
||||
float get_input_gamma() { return get_crt_gamma(); }
|
||||
float get_output_gamma() { return get_lcd_gamma(); }
|
||||
#else
|
||||
#if GAMMA_SIMULATION_MODE == _SIMULATE_GBA_ON_LCD
|
||||
float get_input_gamma() { return get_gba_gamma(); }
|
||||
float get_output_gamma() { return get_lcd_gamma(); }
|
||||
#else
|
||||
#if GAMMA_SIMULATION_MODE == _SIMULATE_LCD_ON_CRT
|
||||
float get_input_gamma() { return get_lcd_gamma(); }
|
||||
float get_output_gamma() { return get_crt_gamma(); }
|
||||
#else
|
||||
#if GAMMA_SIMULATION_MODE == _SIMULATE_GBA_ON_CRT
|
||||
float get_input_gamma() { return get_gba_gamma(); }
|
||||
float get_output_gamma() { return get_crt_gamma(); }
|
||||
#else // Don't simulate anything:
|
||||
float get_input_gamma() { return ntsc_gamma; }
|
||||
float get_output_gamma() { return ntsc_gamma; }
|
||||
#endif // _SIMULATE_GBA_ON_CRT
|
||||
#endif // _SIMULATE_LCD_ON_CRT
|
||||
#endif // _SIMULATE_GBA_ON_LCD
|
||||
#endif // _SIMULATE_CRT_ON_LCD
|
||||
#endif // OVERRIDE_FINAL_GAMMA
|
||||
|
||||
|
||||
// Set decoding/encoding gammas for the current pass. Use static constants for
|
||||
// linearize_input and gamma_encode_output, because they aren't derived, and
|
||||
// they let the compiler do dead-code elimination.
|
||||
// #ifndef GAMMA_ENCODE_EVERY_FBO
|
||||
// #ifdef FIRST_PASS
|
||||
// static const bool linearize_input = true;
|
||||
// float get_pass_input_gamma() { return get_input_gamma(); }
|
||||
// #else
|
||||
// static const bool linearize_input = false;
|
||||
// float get_pass_input_gamma() { return 1.0; }
|
||||
// #endif
|
||||
// #ifdef LAST_PASS
|
||||
// static const bool gamma_encode_output = true;
|
||||
// float get_pass_output_gamma() { return get_output_gamma(); }
|
||||
// #else
|
||||
// static const bool gamma_encode_output = false;
|
||||
// float get_pass_output_gamma() { return 1.0; }
|
||||
// #endif
|
||||
// #else
|
||||
// static const bool linearize_input = true;
|
||||
// static const bool gamma_encode_output = true;
|
||||
// #ifdef FIRST_PASS
|
||||
// float get_pass_input_gamma() { return get_input_gamma(); }
|
||||
// #else
|
||||
// float get_pass_input_gamma() { return get_intermediate_gamma(); }
|
||||
// #endif
|
||||
// #ifdef LAST_PASS
|
||||
// float get_pass_output_gamma() { return get_output_gamma(); }
|
||||
// #else
|
||||
// float get_pass_output_gamma() { return get_intermediate_gamma(); }
|
||||
// #endif
|
||||
// #endif
|
||||
|
||||
// Users might want to know if bilinear filtering will be gamma-correct:
|
||||
// static const bool gamma_aware_bilinear = !linearize_input;
|
||||
|
||||
|
||||
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
|
||||
|
||||
float4 encode_output_opaque(const float4 color, const float gamma)
|
||||
{
|
||||
static const float3 g = 1.0 / float3(gamma, gamma, gamma);
|
||||
return float4(pow(color.rgb, g), 1);
|
||||
}
|
||||
|
||||
float4 decode_input_opaque(const float4 color, const float gamma)
|
||||
{
|
||||
static const float3 g = float3(gamma, gamma, gamma);
|
||||
return float4(pow(color.rgb, g), 1);
|
||||
}
|
||||
|
||||
float4 encode_output(const float4 color, const float gamma)
|
||||
{
|
||||
static const float3 g = 1.0 / float3(gamma, gamma, gamma);
|
||||
return float4(pow(color.rgb, g), color.a);
|
||||
}
|
||||
|
||||
float4 decode_input(const float4 color, const float gamma)
|
||||
{
|
||||
static const float3 g = float3(gamma, gamma, gamma);
|
||||
return float4(pow(color.rgb, g), color.a);
|
||||
}
|
||||
|
||||
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
|
||||
|
||||
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
||||
// Provide a wide array of linearizing texture lookup wrapper functions. The
|
||||
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
|
||||
// lookups are provided for completeness in case that changes someday. Nobody
|
||||
// is likely to use the *fetch and *proj functions, but they're included just
|
||||
// in case. The only tex*D texture sampling functions omitted are:
|
||||
// - tex*Dcmpbias
|
||||
// - tex*Dcmplod
|
||||
// - tex*DARRAY*
|
||||
// - tex*DMS*
|
||||
// - Variants returning integers
|
||||
// Standard line length restrictions are ignored below for vertical brevity.
|
||||
|
||||
// tex2D:
|
||||
float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float gamma)
|
||||
{ return decode_input(tex2D(tex, tex_coords), gamma); }
|
||||
|
||||
float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float gamma)
|
||||
{ return decode_input(tex2D(tex, tex_coords.xy), gamma); }
|
||||
|
||||
// float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off, const float gamma)
|
||||
// { return decode_input(tex2Dlod(tex, float4(tex_coords.x, tex_coords.y, 0, 0), texel_off), gamma); }
|
||||
|
||||
// float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off, const float gamma)
|
||||
// { return decode_input(tex2Dlod(tex, float4(tex_coords.x, tex_coords.y, 0, 0), texel_off), gamma); }
|
||||
|
||||
// tex2Dlod:
|
||||
float4 tex2Dlod_linearize(const sampler2D tex, const float2 tex_coords, const float gamma)
|
||||
{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0, 0), 0.0), gamma); }
|
||||
|
||||
float4 tex2Dlod_linearize(const sampler2D tex, const float4 tex_coords, const float gamma)
|
||||
{ return decode_input(tex2Dlod(tex, float4(tex_coords.xy, 0, 0), 0.0), gamma); }
|
||||
|
||||
// float4 tex2Dlod_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off, const float gamma)
|
||||
// { return decode_input(tex2Dlod(tex, float4(tex_coords.x, tex_coords.y, 0, 0), texel_off), gamma); }
|
||||
|
||||
#endif // _GAMMA_MANAGEMENT_H
|
@ -0,0 +1,715 @@
|
||||
#ifndef _GEOMETRY_FUNCTIONS_H
|
||||
#define _GEOMETRY_FUNCTIONS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "user-settings.fxh"
|
||||
#include "derived-settings-and-constants.fxh"
|
||||
#include "bind-shader-params.fxh"
|
||||
|
||||
|
||||
//////////////////////////// MACROS AND CONSTANTS ////////////////////////////
|
||||
|
||||
// Curvature-related constants:
|
||||
#define MAX_POINT_CLOUD_SIZE 9
|
||||
|
||||
|
||||
///////////////////////////// CURVATURE FUNCTIONS /////////////////////////////
|
||||
|
||||
float2 quadratic_solve(const float a, const float b_over_2, const float c)
|
||||
{
|
||||
// Requires: 1.) a, b, and c are quadratic formula coefficients
|
||||
// 2.) b_over_2 = b/2.0 (simplifies terms to factor 2 out)
|
||||
// 3.) b_over_2 must be guaranteed < 0.0 (avoids a branch)
|
||||
// Returns: Returns float2(first_solution, discriminant), so the caller
|
||||
// can choose how to handle the "no intersection" case. The
|
||||
// Kahan or Citardauq formula is used for numerical robustness.
|
||||
const float discriminant = b_over_2*b_over_2 - a*c;
|
||||
const float solution0 = c/(-b_over_2 + sqrt(discriminant));
|
||||
return float2(solution0, discriminant);
|
||||
}
|
||||
|
||||
float2 intersect_sphere(const float3 view_vec, const float3 eye_pos_vec)
|
||||
{
|
||||
// Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
|
||||
// local coordinate frame (eye_pos_vec is a position, i.e.
|
||||
// a vector from the origin to the eye/camera)
|
||||
// 2.) geom_radius is a global containing the sphere's radius
|
||||
// Returns: Cast a ray of direction view_vec from eye_pos_vec at a
|
||||
// sphere of radius geom_radius, and return the distance to
|
||||
// the first intersection in units of length(view_vec).
|
||||
// http://wiki.cgsociety.org/index.php/Ray_Sphere_Intersection
|
||||
// Quadratic formula coefficients (b_over_2 is guaranteed negative):
|
||||
const float a = dot(view_vec, view_vec);
|
||||
const float b_over_2 = dot(view_vec, eye_pos_vec); // * 2.0 factored out
|
||||
const float c = dot(eye_pos_vec, eye_pos_vec) - geom_radius*geom_radius;
|
||||
return quadratic_solve(a, b_over_2, c);
|
||||
}
|
||||
|
||||
float2 intersect_cylinder(const float3 view_vec, const float3 eye_pos_vec)
|
||||
{
|
||||
// Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
|
||||
// local coordinate frame (eye_pos_vec is a position, i.e.
|
||||
// a vector from the origin to the eye/camera)
|
||||
// 2.) geom_radius is a global containing the cylinder's radius
|
||||
// Returns: Cast a ray of direction view_vec from eye_pos_vec at a
|
||||
// cylinder of radius geom_radius, and return the distance to
|
||||
// the first intersection in units of length(view_vec). The
|
||||
// derivation of the coefficients is in Christer Ericson's
|
||||
// Real-Time Collision Detection, p. 195-196, and this version
|
||||
// uses LaGrange's identity to reduce operations.
|
||||
// Arbitrary "cylinder top" reference point for an infinite cylinder:
|
||||
const float3 cylinder_top_vec = float3(0.0, geom_radius, 0.0);
|
||||
const float3 cylinder_axis_vec = float3(0.0, 1.0, 0.0);//float3(0.0, 2.0*geom_radius, 0.0);
|
||||
const float3 top_to_eye_vec = eye_pos_vec - cylinder_top_vec;
|
||||
const float3 axis_x_view = cross(cylinder_axis_vec, view_vec);
|
||||
const float3 axis_x_top_to_eye = cross(cylinder_axis_vec, top_to_eye_vec);
|
||||
// Quadratic formula coefficients (b_over_2 is guaranteed negative):
|
||||
const float a = dot(axis_x_view, axis_x_view);
|
||||
const float b_over_2 = dot(axis_x_top_to_eye, axis_x_view);
|
||||
const float c = dot(axis_x_top_to_eye, axis_x_top_to_eye) -
|
||||
geom_radius*geom_radius;//*dot(cylinder_axis_vec, cylinder_axis_vec);
|
||||
return quadratic_solve(a, b_over_2, c);
|
||||
}
|
||||
|
||||
float2 cylinder_xyz_to_uv(const float3 intersection_pos_local,
|
||||
const float2 geom_aspect)
|
||||
{
|
||||
// Requires: An xyz intersection position on a cylinder.
|
||||
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Mapping: Define square_uv.x to be the signed arc length in xz-space,
|
||||
// and define square_uv.y = -intersection_pos_local.y (+v = -y).
|
||||
// Start with a numerically robust arc length calculation.
|
||||
const float angle_from_image_center = atan2(intersection_pos_local.x,
|
||||
intersection_pos_local.z);
|
||||
const float signed_arc_len = angle_from_image_center * geom_radius;
|
||||
// Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
|
||||
// by the aspect ratio to stretch the mapping appropriately:
|
||||
const float2 square_uv = float2(signed_arc_len, -intersection_pos_local.y);
|
||||
const float2 video_uv = square_uv / geom_aspect;
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
float3 cylinder_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
|
||||
{
|
||||
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Returns: An xyz intersection position on a cylinder. This is the
|
||||
// inverse of cylinder_xyz_to_uv().
|
||||
// Expand video_uv by the aspect ratio to get proportionate x/y lengths,
|
||||
// then calculate an xyz position for the cylindrical mapping above.
|
||||
const float2 square_uv = video_uv * geom_aspect;
|
||||
const float arc_len = square_uv.x;
|
||||
const float angle_from_image_center = arc_len / geom_radius;
|
||||
const float x_pos = sin(angle_from_image_center) * geom_radius;
|
||||
const float z_pos = cos(angle_from_image_center) * geom_radius;
|
||||
// Or: z = sqrt(geom_radius**2 - x**2)
|
||||
// Or: z = geom_radius/sqrt(1.0 + tan(angle)**2), x = z * tan(angle)
|
||||
const float3 intersection_pos_local = float3(x_pos, -square_uv.y, z_pos);
|
||||
return intersection_pos_local;
|
||||
}
|
||||
|
||||
float2 sphere_xyz_to_uv(const float3 intersection_pos_local,
|
||||
const float2 geom_aspect)
|
||||
{
|
||||
// Requires: An xyz intersection position on a sphere.
|
||||
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Mapping: First define square_uv.x/square_uv.y ==
|
||||
// intersection_pos_local.x/intersection_pos_local.y. Then,
|
||||
// length(square_uv) is the arc length from the image center
|
||||
// at (0.0, 0.0, geom_radius) along the tangent great circle.
|
||||
// Credit for this mapping goes to cgwg: I never managed to
|
||||
// understand his code, but he told me his mapping was based on
|
||||
// great circle distances when I asked him about it, which
|
||||
// informed this very similar (almost identical) mapping.
|
||||
// Start with a numerically robust arc length calculation between the ray-
|
||||
// sphere intersection point and the image center using a method posted by
|
||||
// Roger Stafford on comp.soft-sys.matlab:
|
||||
// https://groups.google.com/d/msg/comp.soft-sys.matlab/zNbUui3bjcA/c0HV_bHSx9cJ
|
||||
const float3 image_center_pos_local = float3(0.0, 0.0, geom_radius);
|
||||
const float cp_len =
|
||||
length(cross(intersection_pos_local, image_center_pos_local));
|
||||
const float dp = dot(intersection_pos_local, image_center_pos_local);
|
||||
const float angle_from_image_center = atan2(cp_len, dp);
|
||||
const float arc_len = angle_from_image_center * geom_radius;
|
||||
// Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
|
||||
// by the aspect ratio to stretch the mapping appropriately:
|
||||
const float2 square_uv_unit = normalize(float2(intersection_pos_local.x,
|
||||
-intersection_pos_local.y));
|
||||
const float2 square_uv = arc_len * square_uv_unit;
|
||||
const float2 video_uv = square_uv / geom_aspect;
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
float3 sphere_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
|
||||
{
|
||||
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Returns: An xyz intersection position on a sphere. This is the
|
||||
// inverse of sphere_xyz_to_uv().
|
||||
// Expand video_uv by the aspect ratio to get proportionate x/y lengths,
|
||||
// then calculate an xyz position for the spherical mapping above.
|
||||
if (video_uv.x != 0 && video_uv.y != 0) {
|
||||
const float2 square_uv = video_uv * geom_aspect;
|
||||
// Using length or sqrt here butchers the framerate on my 8800GTS if
|
||||
// this function is called too many times, and so does taking the max
|
||||
// component of square_uv/square_uv_unit (program length threshold?).
|
||||
//float arc_len = length(square_uv);
|
||||
const float2 square_uv_unit = normalize(square_uv);
|
||||
const float arc_len = square_uv.y/square_uv_unit.y;
|
||||
const float angle_from_image_center = arc_len / geom_radius;
|
||||
const float xy_dist_from_sphere_center =
|
||||
sin(angle_from_image_center) * geom_radius;
|
||||
//float2 xy_pos = xy_dist_from_sphere_center * (square_uv/FIX_ZERO(arc_len));
|
||||
const float2 xy_pos = xy_dist_from_sphere_center * square_uv_unit;
|
||||
const float z_pos = cos(angle_from_image_center) * geom_radius;
|
||||
const float3 intersection_pos_local = float3(xy_pos.x, -xy_pos.y, z_pos);
|
||||
return intersection_pos_local;
|
||||
}
|
||||
else if (video_uv.x != 0) {
|
||||
const float2 square_uv = video_uv * geom_aspect;
|
||||
// Using length or sqrt here butchers the framerate on my 8800GTS if
|
||||
// this function is called too many times, and so does taking the max
|
||||
// component of square_uv/square_uv_unit (program length threshold?).
|
||||
//float arc_len = length(square_uv);
|
||||
const float2 square_uv_unit = normalize(square_uv);
|
||||
const float angle_from_image_center = 0;
|
||||
const float xy_dist_from_sphere_center = sin(angle_from_image_center) * geom_radius;
|
||||
const float2 xy_pos = xy_dist_from_sphere_center * square_uv_unit;
|
||||
const float z_pos = cos(angle_from_image_center) * geom_radius;
|
||||
const float3 intersection_pos_local = float3(xy_pos.x, -xy_pos.y, z_pos);
|
||||
return intersection_pos_local;
|
||||
}
|
||||
else {
|
||||
const float2 xy_pos = float2(0, 0);
|
||||
const float z_pos = geom_radius;
|
||||
const float3 intersection_pos_local = float3(xy_pos.x, -xy_pos.y, z_pos);
|
||||
return intersection_pos_local;
|
||||
}
|
||||
}
|
||||
|
||||
float2 sphere_alt_xyz_to_uv(const float3 intersection_pos_local,
|
||||
const float2 geom_aspect)
|
||||
{
|
||||
// Requires: An xyz intersection position on a cylinder.
|
||||
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Mapping: Define square_uv.x to be the signed arc length in xz-space,
|
||||
// and define square_uv.y == signed arc length in yz-space.
|
||||
// See cylinder_xyz_to_uv() for implementation details (very similar).
|
||||
const float2 angle_from_image_center = atan2(
|
||||
float2(intersection_pos_local.x, -intersection_pos_local.y),
|
||||
intersection_pos_local.zz);
|
||||
const float2 signed_arc_len = angle_from_image_center * geom_radius;
|
||||
const float2 video_uv = signed_arc_len / geom_aspect;
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
float3 sphere_alt_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
|
||||
{
|
||||
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
||||
// Returns: An xyz intersection position on a sphere. This is the
|
||||
// inverse of sphere_alt_xyz_to_uv().
|
||||
// See cylinder_uv_to_xyz() for implementation details (very similar).
|
||||
const float2 square_uv = video_uv * geom_aspect;
|
||||
const float2 arc_len = square_uv;
|
||||
const float2 angle_from_image_center = arc_len / geom_radius;
|
||||
const float2 xy_pos = sin(angle_from_image_center) * geom_radius;
|
||||
const float z_pos = sqrt(geom_radius*geom_radius - dot(xy_pos, xy_pos));
|
||||
return float3(xy_pos.x, -xy_pos.y, z_pos);
|
||||
}
|
||||
|
||||
float2 intersect(const float3 view_vec_local, const float3 eye_pos_local,
|
||||
const float geom_mode)
|
||||
{
|
||||
return geom_mode < 2.5 ? intersect_sphere(view_vec_local, eye_pos_local) :
|
||||
intersect_cylinder(view_vec_local, eye_pos_local);
|
||||
}
|
||||
|
||||
float2 xyz_to_uv(const float3 intersection_pos_local,
|
||||
const float2 geom_aspect, const float geom_mode)
|
||||
{
|
||||
return geom_mode < 1.5 ?
|
||||
sphere_xyz_to_uv(intersection_pos_local, geom_aspect) :
|
||||
geom_mode < 2.5 ?
|
||||
sphere_alt_xyz_to_uv(intersection_pos_local, geom_aspect) :
|
||||
cylinder_xyz_to_uv(intersection_pos_local, geom_aspect);
|
||||
}
|
||||
|
||||
float3 uv_to_xyz(const float2 uv, const float2 geom_aspect,
|
||||
const float geom_mode)
|
||||
{
|
||||
return geom_mode < 1.5 ? sphere_uv_to_xyz(uv, geom_aspect) :
|
||||
geom_mode < 2.5 ? sphere_alt_uv_to_xyz(uv, geom_aspect) :
|
||||
cylinder_uv_to_xyz(uv, geom_aspect);
|
||||
}
|
||||
|
||||
float2 view_vec_to_uv(const float3 view_vec_local, const float3 eye_pos_local,
|
||||
const float2 geom_aspect, const float geom_mode, out float3 intersection_pos)
|
||||
{
|
||||
// Get the intersection point on the primitive, given an eye position
|
||||
// and view vector already in its local coordinate frame:
|
||||
const float2 intersect_dist_and_discriminant = intersect(view_vec_local,
|
||||
eye_pos_local, geom_mode);
|
||||
const float3 intersection_pos_local = eye_pos_local +
|
||||
view_vec_local * intersect_dist_and_discriminant.x;
|
||||
// Save the intersection position to an output parameter:
|
||||
intersection_pos = intersection_pos_local;
|
||||
// Transform into uv coords, but give out-of-range coords if the
|
||||
// view ray doesn't intersect the primitive in the first place:
|
||||
return intersect_dist_and_discriminant.y > 0.005 ?
|
||||
xyz_to_uv(intersection_pos_local, geom_aspect, geom_mode) : float2(1.0, 1.0);
|
||||
}
|
||||
|
||||
float3 get_ideal_global_eye_pos_for_points(float3 eye_pos,
|
||||
const float2 geom_aspect, const float3 global_coords[MAX_POINT_CLOUD_SIZE],
|
||||
const int num_points)
|
||||
{
|
||||
// Requires: Parameters:
|
||||
// 1.) Starting eye_pos is a global 3D position at which the
|
||||
// camera contains all points in global_coords[] in its FOV
|
||||
// 2.) geom_aspect = get_aspect_vector(
|
||||
// IN.output_size.x / IN.output_size.y);
|
||||
// 3.) global_coords is a point cloud containing global xyz
|
||||
// coords of extreme points on the simulated CRT screen.
|
||||
// Globals:
|
||||
// 1.) geom_view_dist must be > 0.0. It controls the "near
|
||||
// plane" used to interpret flat_video_uv as a view
|
||||
// vector, which controls the field of view (FOV).
|
||||
// Eyespace coordinate frame: +x = right, +y = up, +z = back
|
||||
// Returns: Return an eye position at which the point cloud spans as
|
||||
// much of the screen as possible (given the FOV controlled by
|
||||
// geom_view_dist) without being cropped or sheared.
|
||||
// Algorithm:
|
||||
// 1.) Move the eye laterally to a point which attempts to maximize the
|
||||
// the amount we can move forward without clipping the CRT screen.
|
||||
// 2.) Move forward by as much as possible without clipping the CRT.
|
||||
// Get the allowed movement range by solving for the eye_pos offsets
|
||||
// that result in each point being projected to a screen edge/corner in
|
||||
// pseudo-normalized device coords (where xy ranges from [-0.5, 0.5]
|
||||
// and z = eyespace z):
|
||||
// pndc_coord = float3(float2(eyespace_xyz.x, -eyespace_xyz.y)*
|
||||
// geom_view_dist / (geom_aspect * -eyespace_xyz.z), eyespace_xyz.z);
|
||||
// Notes:
|
||||
// The field of view is controlled by geom_view_dist's magnitude relative to
|
||||
// the view vector's x and y components:
|
||||
// view_vec.xy ranges from [-0.5, 0.5] * geom_aspect
|
||||
// view_vec.z = -geom_view_dist
|
||||
// But for the purposes of perspective divide, it should be considered:
|
||||
// view_vec.xy ranges from [-0.5, 0.5] * geom_aspect / geom_view_dist
|
||||
// view_vec.z = -1.0
|
||||
static const int max_centering_iters = 1; // Keep for easy testing.
|
||||
for(int iter = 0; iter < max_centering_iters; iter++)
|
||||
{
|
||||
// 0.) Get the eyespace coordinates of our point cloud:
|
||||
float3 eyespace_coords[MAX_POINT_CLOUD_SIZE];
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
eyespace_coords[i] = global_coords[i] - eye_pos;
|
||||
}
|
||||
// 1a.)For each point, find out how far we can move eye_pos in each
|
||||
// lateral direction without the point clipping the frustum.
|
||||
// Eyespace +y = up, screenspace +y = down, so flip y after
|
||||
// applying the eyespace offset (on the way to "clip space").
|
||||
// Solve for two offsets per point based on:
|
||||
// (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) *
|
||||
// geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(-0.5)
|
||||
// (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) *
|
||||
// geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(0.5)
|
||||
// offset_ul and offset_dr represent the farthest we can move the
|
||||
// eye_pos up-left and down-right. Save the min of all offset_dr's
|
||||
// and the max of all offset_ul's (since it's negative).
|
||||
float abs_radius = abs(geom_radius); // In case anyone gets ideas. ;)
|
||||
float2 offset_dr_min = float2(10.0 * abs_radius, 10.0 * abs_radius);
|
||||
float2 offset_ul_max = float2(-10.0 * abs_radius, -10.0 * abs_radius);
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
static const float2 flipy = float2(1.0, -1.0);
|
||||
float3 eyespace_xyz = eyespace_coords[i];
|
||||
float2 offset_dr = eyespace_xyz.xy - float2(-0.5, -0.5) *
|
||||
(geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
|
||||
float2 offset_ul = eyespace_xyz.xy - float2(0.5, 0.5) *
|
||||
(geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
|
||||
offset_dr_min = min(offset_dr_min, offset_dr);
|
||||
offset_ul_max = max(offset_ul_max, offset_ul);
|
||||
}
|
||||
// 1b.)Update eye_pos: Adding the average of offset_ul_max and
|
||||
// offset_dr_min gives it equal leeway on the top vs. bottom
|
||||
// and left vs. right. Recalculate eyespace_coords accordingly.
|
||||
float2 center_offset = 0.5 * (offset_ul_max + offset_dr_min);
|
||||
eye_pos.xy += center_offset;
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
eyespace_coords[i] = global_coords[i] - eye_pos;
|
||||
}
|
||||
// 2a.)For each point, find out how far we can move eye_pos forward
|
||||
// without the point clipping the frustum. Flip the y
|
||||
// direction in advance (matters for a later step, not here).
|
||||
// Solve for four offsets per point based on:
|
||||
// eyespace_xyz_flipy.x * geom_view_dist /
|
||||
// (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) =-0.5
|
||||
// eyespace_xyz_flipy.y * geom_view_dist /
|
||||
// (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) =-0.5
|
||||
// eyespace_xyz_flipy.x * geom_view_dist /
|
||||
// (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) = 0.5
|
||||
// eyespace_xyz_flipy.y * geom_view_dist /
|
||||
// (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) = 0.5
|
||||
// We'll vectorize the actual computation. Take the maximum of
|
||||
// these four for a single offset, and continue taking the max
|
||||
// for every point (use max because offset.z is negative).
|
||||
float offset_z_max = -10.0 * geom_radius * geom_view_dist;
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
float3 eyespace_xyz_flipy = eyespace_coords[i] *
|
||||
float3(1.0, -1.0, 1.0);
|
||||
float4 offset_zzzz = eyespace_xyz_flipy.zzzz +
|
||||
(eyespace_xyz_flipy.xyxy * geom_view_dist) /
|
||||
(float4(-0.5, -0.5, 0.5, 0.5) * float4(geom_aspect, geom_aspect));
|
||||
// Ignore offsets that push positive x/y values to opposite
|
||||
// boundaries, and vice versa, and don't let the camera move
|
||||
// past a point in the dead center of the screen:
|
||||
offset_z_max = (eyespace_xyz_flipy.x < 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.x) : offset_z_max;
|
||||
offset_z_max = (eyespace_xyz_flipy.y < 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.y) : offset_z_max;
|
||||
offset_z_max = (eyespace_xyz_flipy.x > 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.z) : offset_z_max;
|
||||
offset_z_max = (eyespace_xyz_flipy.y > 0.0) ?
|
||||
max(offset_z_max, offset_zzzz.w) : offset_z_max;
|
||||
offset_z_max = max(offset_z_max, eyespace_xyz_flipy.z);
|
||||
}
|
||||
// 2b.)Update eye_pos: Add the maximum (smallest negative) z offset.
|
||||
eye_pos.z += offset_z_max;
|
||||
}
|
||||
return eye_pos;
|
||||
}
|
||||
|
||||
float3 get_ideal_global_eye_pos(const float3x3 local_to_global,
|
||||
const float2 geom_aspect, const float geom_mode)
|
||||
{
|
||||
// Start with an initial eye_pos that includes the entire primitive
|
||||
// (sphere or cylinder) in its field-of-view:
|
||||
const float3 high_view = float3(0.0, geom_aspect.y, -geom_view_dist);
|
||||
const float3 low_view = high_view * float3(1.0, -1.0, 1.0);
|
||||
const float len_sq = dot(high_view, high_view);
|
||||
const float fov = abs(acos(dot(high_view, low_view)/len_sq));
|
||||
// Trigonometry/similar triangles say distance = geom_radius/sin(fov/2):
|
||||
const float eye_z_spherical = geom_radius/sin(fov*0.5);
|
||||
const float3 eye_pos = geom_mode < 2.5 ?
|
||||
float3(0.0, 0.0, eye_z_spherical) :
|
||||
float3(0.0, 0.0, max(geom_view_dist, eye_z_spherical));
|
||||
|
||||
// Get global xyz coords of extreme sample points on the simulated CRT
|
||||
// screen. Start with the center, edge centers, and corners of the
|
||||
// video image. We can't ignore backfacing points: They're occluded
|
||||
// by closer points on the primitive, but they may NOT be occluded by
|
||||
// the convex hull of the remaining samples (i.e. the remaining convex
|
||||
// hull might not envelope points that do occlude a back-facing point.)
|
||||
static const int num_points = MAX_POINT_CLOUD_SIZE;
|
||||
float3 global_coords[MAX_POINT_CLOUD_SIZE];
|
||||
global_coords[0] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.0), geom_aspect, geom_mode));
|
||||
global_coords[1] = mul(local_to_global, uv_to_xyz(float2(0.0, -0.5), geom_aspect, geom_mode));
|
||||
global_coords[2] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.5), geom_aspect, geom_mode));
|
||||
global_coords[3] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.0), geom_aspect, geom_mode));
|
||||
global_coords[4] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.0), geom_aspect, geom_mode));
|
||||
global_coords[5] = mul(local_to_global, uv_to_xyz(float2(-0.5, -0.5), geom_aspect, geom_mode));
|
||||
global_coords[6] = mul(local_to_global, uv_to_xyz(float2(0.5, -0.5), geom_aspect, geom_mode));
|
||||
global_coords[7] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.5), geom_aspect, geom_mode));
|
||||
global_coords[8] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.5), geom_aspect, geom_mode));
|
||||
// Adding more inner image points could help in extreme cases, but too many
|
||||
// points will kille the framerate. For safety, default to the initial
|
||||
// eye_pos if any z coords are negative:
|
||||
float num_negative_z_coords = 0.0;
|
||||
for(int i = 0; i < num_points; i++)
|
||||
{
|
||||
num_negative_z_coords += float(global_coords[0].z < 0.0);
|
||||
}
|
||||
// Outsource the optimized eye_pos calculation:
|
||||
return num_negative_z_coords > 0.5 ? eye_pos :
|
||||
get_ideal_global_eye_pos_for_points(eye_pos, geom_aspect,
|
||||
global_coords, num_points);
|
||||
}
|
||||
|
||||
float3x3 get_pixel_to_object_matrix(const float3x3 global_to_local,
|
||||
const float3 eye_pos_local, const float3 view_vec_global,
|
||||
const float3 intersection_pos_local, const float3 normal,
|
||||
const float2 output_size_inv)
|
||||
{
|
||||
// Requires: See get_curved_video_uv_coords_and_tangent_matrix for
|
||||
// descriptions of each parameter.
|
||||
// Returns: Return a transformation matrix from 2D pixel-space vectors
|
||||
// (where (+1.0, +1.0) is a vector to one pixel down-right,
|
||||
// i.e. same directionality as uv texels) to 3D object-space
|
||||
// vectors in the CRT's local coordinate frame (right-handed)
|
||||
// ***which are tangent to the CRT surface at the intersection
|
||||
// position.*** (Basically, we want to convert pixel-space
|
||||
// vectors to 3D vectors along the CRT's surface, for later
|
||||
// conversion to uv vectors.)
|
||||
// Shorthand inputs:
|
||||
const float3 pos = intersection_pos_local;
|
||||
const float3 eye_pos = eye_pos_local;
|
||||
// Get a piecewise-linear matrix transforming from "pixelspace" offset
|
||||
// vectors (1.0 = one pixel) to object space vectors in the tangent
|
||||
// plane (faster than finding 3 view-object intersections).
|
||||
// 1.) Get the local view vecs for the pixels to the right and down:
|
||||
const float3 view_vec_right_global = view_vec_global +
|
||||
float3(output_size_inv.x, 0.0, 0.0);
|
||||
const float3 view_vec_down_global = view_vec_global +
|
||||
float3(0.0, -output_size_inv.y, 0.0);
|
||||
const float3 view_vec_right_local =
|
||||
mul(global_to_local, view_vec_right_global);
|
||||
const float3 view_vec_down_local =
|
||||
mul(global_to_local, view_vec_down_global);
|
||||
// 2.) Using the true intersection point, intersect the neighboring
|
||||
// view vectors with the tangent plane:
|
||||
const float3 intersection_vec_dot_normal = float3(dot(pos - eye_pos, normal), dot(pos - eye_pos, normal), dot(pos - eye_pos, normal));
|
||||
const float3 right_pos = eye_pos + (intersection_vec_dot_normal /
|
||||
dot(view_vec_right_local, normal))*view_vec_right_local;
|
||||
const float3 down_pos = eye_pos + (intersection_vec_dot_normal /
|
||||
dot(view_vec_down_local, normal))*view_vec_down_local;
|
||||
// 3.) Subtract the original intersection pos from its neighbors; the
|
||||
// resulting vectors are object-space vectors tangent to the plane.
|
||||
// These vectors are the object-space transformations of (1.0, 0.0)
|
||||
// and (0.0, 1.0) pixel offsets, so they form the first two basis
|
||||
// vectors of a pixelspace to object space transformation. This
|
||||
// transformation is 2D to 3D, so use (0, 0, 0) for the third vector.
|
||||
const float3 object_right_vec = right_pos - pos;
|
||||
const float3 object_down_vec = down_pos - pos;
|
||||
const float3x3 pixel_to_object = float3x3(
|
||||
object_right_vec.x, object_down_vec.x, 0.0,
|
||||
object_right_vec.y, object_down_vec.y, 0.0,
|
||||
object_right_vec.z, object_down_vec.z, 0.0);
|
||||
return pixel_to_object;
|
||||
}
|
||||
|
||||
float3x3 get_object_to_tangent_matrix(const float3 intersection_pos_local,
|
||||
const float3 normal, const float2 geom_aspect, const float geom_mode)
|
||||
{
|
||||
// Requires: See get_curved_video_uv_coords_and_tangent_matrix for
|
||||
// descriptions of each parameter.
|
||||
// Returns: Return a transformation matrix from 3D object-space vectors
|
||||
// in the CRT's local coordinate frame (right-handed, +y = up)
|
||||
// to 2D video_uv vectors (+v = down).
|
||||
// Description:
|
||||
// The TBN matrix formed by the [tangent, bitangent, normal] basis
|
||||
// vectors transforms ordinary vectors from tangent->object space.
|
||||
// The cotangent matrix formed by the [cotangent, cobitangent, normal]
|
||||
// basis vectors transforms normal vectors (covectors) from
|
||||
// tangent->object space. It's the inverse-transpose of the TBN matrix.
|
||||
// We want the inverse of the TBN matrix (transpose of the cotangent
|
||||
// matrix), which transforms ordinary vectors from object->tangent space.
|
||||
// Start by calculating the relevant basis vectors in accordance with
|
||||
// Christian Schüler's blog post "Followup: Normal Mapping Without
|
||||
// Precomputed Tangents": http://www.thetenthplanet.de/archives/1180
|
||||
// With our particular uv mapping, the scale of the u and v directions
|
||||
// is determined entirely by the aspect ratio for cylindrical and ordinary
|
||||
// spherical mappings, and so tangent and bitangent lengths are also
|
||||
// determined by it (the alternate mapping is more complex). Therefore, we
|
||||
// must ensure appropriate cotangent and cobitangent lengths as well.
|
||||
// Base these off the uv<=>xyz mappings for each primitive.
|
||||
const float3 pos = intersection_pos_local;
|
||||
static const float3 x_vec = float3(1.0, 0.0, 0.0);
|
||||
static const float3 y_vec = float3(0.0, 1.0, 0.0);
|
||||
// The tangent and bitangent vectors correspond with increasing u and v,
|
||||
// respectively. Mathematically we'd base the cotangent/cobitangent on
|
||||
// those, but we'll compute the cotangent/cobitangent directly when we can.
|
||||
float3 cotangent_unscaled, cobitangent_unscaled;
|
||||
// geom_mode should be constant-folded without _RUNTIME_GEOMETRY_MODE.
|
||||
if(geom_mode < 1.5)
|
||||
{
|
||||
// Sphere:
|
||||
// tangent = normalize(cross(normal, cross(x_vec, pos))) * geom_aspect.x
|
||||
// bitangent = normalize(cross(cross(y_vec, pos), normal)) * geom_aspect.y
|
||||
// inv_determinant = 1.0/length(cross(bitangent, tangent))
|
||||
// cotangent = cross(normal, bitangent) * inv_determinant
|
||||
// == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
|
||||
// cobitangent = cross(tangent, normal) * inv_determinant
|
||||
// == normalize(cross(x_vec, pos)) * geom_aspect.x * inv_determinant
|
||||
// Simplified (scale by inv_determinant below):
|
||||
cotangent_unscaled = normalize(cross(y_vec, pos)) * geom_aspect.y;
|
||||
cobitangent_unscaled = normalize(cross(x_vec, pos)) * geom_aspect.x;
|
||||
}
|
||||
else if(geom_mode < 2.5)
|
||||
{
|
||||
// Sphere, alternate mapping:
|
||||
// This mapping works a bit like the cylindrical mapping in two
|
||||
// directions, which makes the lengths and directions more complex.
|
||||
// Unfortunately, I can't find much of a shortcut:
|
||||
const float3 tangent = normalize(
|
||||
cross(y_vec, float3(pos.x, 0.0, pos.z))) * geom_aspect.x;
|
||||
const float3 bitangent = normalize(
|
||||
cross(x_vec, float3(0.0, pos.yz))) * geom_aspect.y;
|
||||
cotangent_unscaled = cross(normal, bitangent);
|
||||
cobitangent_unscaled = cross(tangent, normal);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Cylinder:
|
||||
// tangent = normalize(cross(y_vec, normal)) * geom_aspect.x;
|
||||
// bitangent = float3(0.0, -geom_aspect.y, 0.0);
|
||||
// inv_determinant = 1.0/length(cross(bitangent, tangent))
|
||||
// cotangent = cross(normal, bitangent) * inv_determinant
|
||||
// == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
|
||||
// cobitangent = cross(tangent, normal) * inv_determinant
|
||||
// == float3(0.0, -geom_aspect.x, 0.0) * inv_determinant
|
||||
cotangent_unscaled = cross(y_vec, normal) * geom_aspect.y;
|
||||
cobitangent_unscaled = float3(0.0, -geom_aspect.x, 0.0);
|
||||
}
|
||||
const float3 computed_normal =
|
||||
cross(cobitangent_unscaled, cotangent_unscaled);
|
||||
const float inv_determinant = rsqrt(dot(computed_normal, computed_normal));
|
||||
const float3 cotangent = cotangent_unscaled * inv_determinant;
|
||||
const float3 cobitangent = cobitangent_unscaled * inv_determinant;
|
||||
// The [cotangent, cobitangent, normal] column vecs form the cotangent
|
||||
// frame, i.e. the inverse-transpose TBN matrix. Get its transpose:
|
||||
const float3x3 object_to_tangent = float3x3(cotangent, cobitangent, normal);
|
||||
return object_to_tangent;
|
||||
}
|
||||
|
||||
float2 get_curved_video_uv_coords_and_tangent_matrix(
|
||||
const float2 flat_video_uv, const float3 eye_pos_local,
|
||||
const float2 output_size_inv, const float2 geom_aspect,
|
||||
const float geom_mode, const float3x3 global_to_local,
|
||||
out float2x2 pixel_to_tangent_video_uv)
|
||||
{
|
||||
// Requires: Parameters:
|
||||
// 1.) flat_video_uv coords are in range [0.0, 1.0], where
|
||||
// (0.0, 0.0) is the top-left corner of the screen and
|
||||
// (1.0, 1.0) is the bottom-right corner.
|
||||
// 2.) eye_pos_local is the 3D camera position in the simulated
|
||||
// CRT's local coordinate frame. For best results, it must
|
||||
// be computed based on the same geom_view_dist used here.
|
||||
// 3.) output_size_inv = float2(1.0)/IN.output_size
|
||||
// 4.) geom_aspect = get_aspect_vector(
|
||||
// IN.output_size.x / IN.output_size.y);
|
||||
// 5.) geom_mode is a static or runtime mode setting:
|
||||
// 0 = off, 1 = sphere, 2 = sphere alt., 3 = cylinder
|
||||
// 6.) global_to_local is a 3x3 matrix transforming (ordinary)
|
||||
// worldspace vectors to the CRT's local coordinate frame
|
||||
// Globals:
|
||||
// 1.) geom_view_dist must be > 0.0. It controls the "near
|
||||
// plane" used to interpret flat_video_uv as a view
|
||||
// vector, which controls the field of view (FOV).
|
||||
// Returns: Return final uv coords in [0.0, 1.0], and return a pixel-
|
||||
// space to video_uv tangent-space matrix in the out parameter.
|
||||
// (This matrix assumes pixel-space +y = down, like +v = down.)
|
||||
// We'll transform flat_video_uv into a view vector, project
|
||||
// the view vector from the camera/eye, intersect with a sphere
|
||||
// or cylinder representing the simulated CRT, and convert the
|
||||
// intersection position into final uv coords and a local
|
||||
// transformation matrix.
|
||||
// First get the 3D view vector (geom_aspect and geom_view_dist are globals):
|
||||
// 1.) Center uv around (0.0, 0.0) and make (-0.5, -0.5) and (0.5, 0.5)
|
||||
// correspond to the top-left/bottom-right output screen corners.
|
||||
// 2.) Multiply by geom_aspect to preemptively "undo" Retroarch's screen-
|
||||
// space 2D aspect correction. We'll reapply it in uv-space.
|
||||
// 3.) (x, y) = (u, -v), because +v is down in 2D screenspace, but +y
|
||||
// is up in 3D worldspace (enforce a right-handed system).
|
||||
// 4.) The view vector z controls the "near plane" distance and FOV.
|
||||
// For the effect of "looking through a window" at a CRT, it should be
|
||||
// set equal to the user's distance from their physical screen, in
|
||||
// units of the viewport's physical diagonal size.
|
||||
const float2 view_uv = (flat_video_uv - float2(0.5, 0.5)) * geom_aspect;
|
||||
const float3 view_vec_global =
|
||||
float3(view_uv.x, -view_uv.y, -geom_view_dist);
|
||||
// Transform the view vector into the CRT's local coordinate frame, convert
|
||||
// to video_uv coords, and get the local 3D intersection position:
|
||||
const float3 view_vec_local = mul(global_to_local, view_vec_global);
|
||||
float3 pos;
|
||||
const float2 centered_uv = view_vec_to_uv(
|
||||
view_vec_local, eye_pos_local, geom_aspect, geom_mode, pos);
|
||||
const float2 video_uv = centered_uv + float2(0.5, 0.5);
|
||||
// Get a pixel-to-tangent-video-uv matrix. The caller could deal with
|
||||
// all but one of these cases, but that would be more complicated.
|
||||
#if _DRIVERS_ALLOW_DERIVATIVES
|
||||
// Derivatives obtain a matrix very fast, but the direction of pixel-
|
||||
// space +y seems to depend on the pass. Enforce the correct direction
|
||||
// on a best-effort basis (but it shouldn't matter for antialiasing).
|
||||
const float2 duv_dx = ddx(video_uv);
|
||||
const float2 duv_dy = ddy(video_uv);
|
||||
#ifdef LAST_PASS
|
||||
pixel_to_tangent_video_uv = float2x2(
|
||||
duv_dx.x, duv_dy.x,
|
||||
-duv_dx.y, -duv_dy.y);
|
||||
#else
|
||||
pixel_to_tangent_video_uv = float2x2(
|
||||
duv_dx.x, duv_dy.x,
|
||||
duv_dx.y, duv_dy.y);
|
||||
#endif
|
||||
#else
|
||||
// Manually define a transformation matrix. We'll assume pixel-space
|
||||
// +y = down, just like +v = down.
|
||||
if(geom_force_correct_tangent_matrix)
|
||||
{
|
||||
// Get the surface normal based on the local intersection position:
|
||||
const float3 normal_base = geom_mode < 2.5 ? pos :
|
||||
float3(pos.x, 0.0, pos.z);
|
||||
const float3 normal = normalize(normal_base);
|
||||
// Get pixel-to-object and object-to-tangent matrices and combine
|
||||
// them into a 2x2 pixel-to-tangent matrix for video_uv offsets:
|
||||
const float3x3 pixel_to_object = get_pixel_to_object_matrix(
|
||||
global_to_local, eye_pos_local, view_vec_global, pos, normal,
|
||||
output_size_inv);
|
||||
const float3x3 object_to_tangent = get_object_to_tangent_matrix(
|
||||
pos, normal, geom_aspect, geom_mode);
|
||||
const float3x3 pixel_to_tangent3x3 =
|
||||
mul(object_to_tangent, pixel_to_object);
|
||||
pixel_to_tangent_video_uv = float2x2(
|
||||
pixel_to_tangent3x3[0][0], pixel_to_tangent3x3[0][1], pixel_to_tangent3x3[1][0], pixel_to_tangent3x3[1][1]);//._m00_m01_m10_m11);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Ignore curvature, and just consider flat scaling. The
|
||||
// difference is only apparent with strong curvature:
|
||||
pixel_to_tangent_video_uv = float2x2(
|
||||
output_size_inv.x, 0.0, 0.0, output_size_inv.y);
|
||||
}
|
||||
#endif
|
||||
return video_uv;
|
||||
}
|
||||
|
||||
float get_border_dim_factor(const float2 video_uv, const float2 geom_aspect)
|
||||
{
|
||||
// COPYRIGHT NOTE FOR THIS FUNCTION:
|
||||
// Copyright (C) 2010-2012 cgwg, 2014 TroggleMonkey
|
||||
// This function uses an algorithm first coded in several of cgwg's GPL-
|
||||
// licensed lines in crt-geom-curved.cg and its ancestors. The line
|
||||
// between algorithm and code is nearly indistinguishable here, so it's
|
||||
// unclear whether I could even release this project under a non-GPL
|
||||
// license with this function included.
|
||||
|
||||
// Calculate border_dim_factor from the proximity to uv-space image
|
||||
// borders; geom_aspect/border_size/border/darkness/border_compress are globals:
|
||||
const float2 edge_dists = min(video_uv, float2(1.0, 1.0) - video_uv) *
|
||||
geom_aspect;
|
||||
const float2 border_penetration =
|
||||
max(float2(border_size, border_size) - edge_dists, float2(0.0, 0.0));
|
||||
const float penetration_ratio = border_size > 0 ? length(border_penetration)/border_size : 0;
|
||||
const float border_escape_ratio = max(1.0 - penetration_ratio, 0.0);
|
||||
const float border_dim_factor =
|
||||
pow(border_escape_ratio, border_darkness) * max(1.0, border_compress);
|
||||
return min(border_dim_factor, 1.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif // _GEOMETRY_FUNCTIONS_H
|
||||
|
||||
|
||||
|
@ -0,0 +1,76 @@
|
||||
#ifndef _HELPER_FUNCTIONS_AND_MACROS_H
|
||||
#define _HELPER_FUNCTIONS_AND_MACROS_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2020 Alex Gunter
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
|
||||
float4 tex2D_nograd(sampler2D tex, float2 tex_coords)
|
||||
{
|
||||
return tex2Dlod(tex, float4(tex_coords, 0, 0), 0.0);
|
||||
}
|
||||
|
||||
// ReShade 4 does not permit the use of functions or the ternary operator
|
||||
// outside of a function definition. This is a problem for this port
|
||||
// because the original crt-royale shader makes heavy use of these
|
||||
// constructs at the root level.
|
||||
|
||||
// These preprocessor definitions are a workaround for this limitation.
|
||||
// Note that they are strictly intended for defining complex global
|
||||
// constants. I doubt they're more performant than the built-in
|
||||
// equivalents, so I recommend using the built-ins whenever you can.
|
||||
|
||||
|
||||
#define macro_sign(c) -((int) ((c) != 0)) * -((int) ((c) > 0))
|
||||
#define macro_abs(c) (c) * macro_sign(c)
|
||||
|
||||
#define macro_min(c, d) (c) * ((int) ((c) <= (d))) + (d) * ((int) ((c) > (d)))
|
||||
#define macro_max(c, d) (c) * ((int) ((c) >= (d))) + (d) * ((int) ((c) < (d)))
|
||||
#define macro_clamp(c, l, u) macro_min(macro_max(c, l), u)
|
||||
|
||||
#define macro_ceil(c) (float) ((int) (c) + (int) (((int) (c)) < (c)))
|
||||
|
||||
#define macro_cond(c, a, b) float(c) * (a) + float(!(c)) * (b)
|
||||
|
||||
|
||||
|
||||
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
||||
|
||||
static const float pi = 3.141592653589;
|
||||
// We often want to find the location of the previous texel, e.g.:
|
||||
// const float2 curr_texel = uv * texture_size;
|
||||
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
|
||||
// const float2 prev_texel_uv = prev_texel / texture_size;
|
||||
// However, many GPU drivers round incorrectly around exact texel locations.
|
||||
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
||||
// require this value to be farther from 0.5 than others; define it here.
|
||||
// const float2 prev_texel =
|
||||
// floor(curr_texel - float2(under_half)) + float2(0.5);
|
||||
static const float under_half = 0.4995;
|
||||
|
||||
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
||||
#define FIX_ZERO(c) (macro_max(macro_abs(c), 0.0000152587890625)) // 2^-16
|
||||
|
||||
// #define fmod(x, y) ((x) - (y) * floor((x)/(y) + FIX_ZERO(0.0)))
|
||||
#define fmod(x, y) (frac((x) / (y)) * (y))
|
||||
|
||||
#endif // _HELPER_FUNCTIONS_AND_MACROS_H
|
@ -0,0 +1,624 @@
|
||||
#ifndef _PHOSHOR_MASK_CALCULATIONS_H
|
||||
#define _PHOSHOR_MASK_CALCULATIONS_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2020 Alex Gunter
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
|
||||
/*
|
||||
* Our goal is to use arithmetic to generate the phosphor mask.
|
||||
* Phosphor masks are regular patterns, so we want something periodic.
|
||||
* We need to avoid integer arithmetic because it tends to cause rounding errors.
|
||||
*
|
||||
* For all masks, we want to approximate a pulse wave in at least one dimension. This pulse wave
|
||||
* will have narrow peaks, wide troughs, and constant periodicity.
|
||||
* GRILLE will have a pulse wave along the x-axis and will be constant along the y-axis.
|
||||
* SLOT and SHADOW will likely have a superposition of two out-of-phase pulse waves along each axis.
|
||||
* For SHADOW, the width of the peaks will vary such that they generate ellipsoids on the screen.
|
||||
*
|
||||
* We can get a periodic function by starting with a triangle wave: T(t, f) = abs(1 - 2*frac(t * f)).
|
||||
* This function gives us a triangle wave with f cycles in the domain [0, 1].
|
||||
* Note that T(0, f) = 1.
|
||||
*
|
||||
* Then we can compose this with a sigmoid curve to squish the triangle wave into a pulse wave.
|
||||
* P(s, p, q) = exp(q s - q/2) / (exp(q s - q/2) + exp(-p))
|
||||
* s(t, f, o) = T(t*f - o, 1)
|
||||
*
|
||||
* f is the number of pulses to render along the given axis.
|
||||
* o is the channel's horizontal ofset along the given axis, normalized via the quotient raw_offset / raw_triad width.
|
||||
* p and q control how closely P resembles an ideal pulse wave and also how wide the peaks and troughs are.
|
||||
*
|
||||
* The interaction between p and q is rather complicated and difficult to describe, so they're not a good pair
|
||||
* of parameters for users. But we have the info necessary to solve for p in terms of q.
|
||||
* We know the width of a phosphor and the width of a triad, and we know the domain and range of P.
|
||||
* We can choose a coordinate (t0, y0) that will denote the edge of the phosphor.
|
||||
* Note that y0 = P(t0, p, q) for some p and q.
|
||||
* We let t0 = raw_phosphor_width / raw_triad_width, since we need to respect the shape of the phosphor.
|
||||
* We let the user define P(t0).
|
||||
* Technically, this means the user is defining the brightness of the phosphor's furthest edge.
|
||||
* Visually, this looks like the user is defining the width of the phosphor.
|
||||
* We'll call this the Phosphor Thickness.
|
||||
* We let the user define q.
|
||||
* Technically, this means the user is defining the squareness of the pulse wave.
|
||||
* Visually, this looks like the user is defining the sharpness of the phosphor.
|
||||
* We'll call this the Phosphor Sharpness.
|
||||
*
|
||||
* We can solve for p in terms of q very efficiently.
|
||||
* p = (ln(y0 / (1 - y0)) - q) / (0.5 - 2 t0)
|
||||
*
|
||||
* Note that, if you work through the algebra, you get a denominator of (t0 - 0.5).
|
||||
* Using (0.5 - 2 t0) actually works better. It also matches up when you try plotting P and (t0, y0).
|
||||
*
|
||||
* For the GRILLE and SLOT masks, we can compute p once and recycle it.
|
||||
* For the SHADOW mask, we can either compute p on each iteration or find a way to interpolate between min_p and max_p.
|
||||
*
|
||||
* One might expect it'd be way better to use a clamped triangle wave rather than a sigmoid or exponentiated cosine wave.
|
||||
* As far as I can tell, this ends up being incorrect surprisingly enough. Although it's a good bit faster,
|
||||
* it has terrible aliasing artifacts at small scales. The other implementations are slower, but they produce
|
||||
* evenly-sized RGB phosphors for a variety of configurations even when the triad width is 3 pixels. At that
|
||||
* scale, the triangle wave approach produces triads where one of the phosphors is thicker than the others.
|
||||
* Taking into account the compute_mask_factor trick, the triangle wave approach would be a negligible
|
||||
* performance improvement at the cost of a large drop in visual quality and user friendliness.
|
||||
*/
|
||||
|
||||
|
||||
#include "bind-shader-params.fxh"
|
||||
#include "scanline-functions.fxh"
|
||||
|
||||
/*
|
||||
* The GRILLE mask consists of an array of vertical stripes, so each channel will vary along the x-axis and will be constant
|
||||
* along the y-axis.
|
||||
*
|
||||
* It has the following dimensions:
|
||||
* Phosphors are 18 units wide with unbounded height.
|
||||
* Phosphors in a triad are 2 units apart.
|
||||
* Triads are 6 units apart.
|
||||
* Triad centers are 64 units apart.
|
||||
* The phosphors follow an RGB pattern.
|
||||
* The left-most phosphor is red and offset by 3 units to the right.
|
||||
*/
|
||||
static const float grille_raw_phosphor_width = 18;
|
||||
static const float grille_raw_phosphor_gap = 2;
|
||||
static const float grille_raw_triad_horiz_gap = 6;
|
||||
static const float grille_raw_triad_width = 3*grille_raw_phosphor_width + 2*grille_raw_phosphor_gap + grille_raw_triad_horiz_gap;
|
||||
|
||||
static const float grille_raw_r_offset = (grille_raw_triad_horiz_gap + grille_raw_phosphor_width) / 2;
|
||||
static const float grille_raw_g_offset = grille_raw_r_offset + grille_raw_phosphor_width + grille_raw_phosphor_gap;
|
||||
static const float grille_raw_b_offset = grille_raw_g_offset + grille_raw_phosphor_width + grille_raw_phosphor_gap;
|
||||
static const float3 grille_norm_center_offsets = float3(
|
||||
grille_raw_r_offset,
|
||||
grille_raw_g_offset,
|
||||
grille_raw_b_offset
|
||||
) / grille_raw_triad_width;
|
||||
|
||||
static const float grille_edge_t = grille_raw_phosphor_width / 2;
|
||||
static const float grille_edge_norm_t = grille_edge_t / grille_raw_triad_width;
|
||||
|
||||
|
||||
/*
|
||||
* The SLOT mask consists of an array of rectangles, so each channel will vary along both the x- and y-axes.
|
||||
*
|
||||
* It has the following dimensions:
|
||||
* Phosphors are 18 units wide and 66 units tall.
|
||||
* Phosphors in a triad are 2 units apart.
|
||||
* Triads are 6 units apart horizontally and 6 units apart vertically.
|
||||
* Triad centers are 64 units apart horizontally and 73 units apart vertically.
|
||||
* The phosphors follow an RGB pattern.
|
||||
* The upper-left-most phosphor is red and offset by 3 units to the right and 3 units down.
|
||||
*/
|
||||
static const float slot_raw_phosphor_width = 18;
|
||||
static const float slot_raw_phosphor_gap = 2;
|
||||
static const float slot_raw_triad_horiz_gap = 6;
|
||||
static const float slot_raw_triad_width = 3*slot_raw_phosphor_width + 2*slot_raw_phosphor_gap + slot_raw_triad_horiz_gap;
|
||||
|
||||
static const float slot_raw_phosphor_height = 66;
|
||||
static const float slot_raw_triad_vert_gap = 6;
|
||||
static const float slot_raw_triad_height = slot_raw_phosphor_height + slot_raw_triad_vert_gap;
|
||||
|
||||
static const float slot_aspect_ratio = slot_raw_triad_height / slot_raw_triad_width;
|
||||
|
||||
static const float slot_raw_r_offset_x = (slot_raw_triad_horiz_gap + slot_raw_phosphor_width) / 2;
|
||||
static const float slot_raw_g_offset_x = slot_raw_r_offset_x + slot_raw_phosphor_width + slot_raw_phosphor_gap;
|
||||
static const float slot_raw_b_offset_x = slot_raw_g_offset_x + slot_raw_phosphor_width + slot_raw_phosphor_gap;
|
||||
static const float3 slot_norm_center_offsets_x = float3(
|
||||
slot_raw_r_offset_x,
|
||||
slot_raw_g_offset_x,
|
||||
slot_raw_b_offset_x
|
||||
) / slot_raw_triad_width;
|
||||
static const float3 slot_norm_center_offsets_y = float3(0.5, 0.5, 0.5);
|
||||
|
||||
static const float slot_edge_tx = slot_raw_phosphor_width / 2;
|
||||
// We draw the slot mask as two sets of columns. To do that, we have to pretend the horizontal gap is the size of a whole triad.
|
||||
// Then we need to halve the position of the phosphor edge.
|
||||
static const float slot_edge_norm_tx = 0.5 * slot_edge_tx / slot_raw_triad_width;
|
||||
static const float slot_edge_ty = slot_raw_phosphor_height / 2;
|
||||
static const float slot_edge_norm_ty = slot_edge_ty / slot_raw_triad_height;
|
||||
|
||||
/*
|
||||
* The SHADOW mask consists of an array of circles, so each channel will vary along both the x- and y-axes.
|
||||
*
|
||||
* It has the following dimensions:
|
||||
* Phosphors are 21 units in diameter.
|
||||
* All phosphors are 0 units apart.
|
||||
* Triad centers are 63 units apart horizontally and 21 units apart vertically.
|
||||
* The phosphors follow a GBR pattern on odd rows and RBG on even rows.
|
||||
* The upper-left-most phosphor is green and centered on the corner of the screen.
|
||||
*/
|
||||
static const float shadow_raw_phosphor_diam = 21;
|
||||
static const float shadow_raw_phosphor_gap = 0;
|
||||
static const float shadow_raw_triad_horiz_gap = 0;
|
||||
static const float shadow_raw_triad_vert_gap = 0;
|
||||
|
||||
static const float shadow_raw_triad_width = 3*shadow_raw_phosphor_diam + 2*shadow_raw_phosphor_gap + shadow_raw_triad_horiz_gap;
|
||||
static const float shadow_raw_triad_height = shadow_raw_phosphor_diam + shadow_raw_triad_vert_gap;
|
||||
|
||||
static const float shadow_aspect_ratio = shadow_raw_triad_height / shadow_raw_triad_width;
|
||||
|
||||
static const float shadow_raw_g_offset_x = 0;
|
||||
static const float shadow_raw_b_offset_x = shadow_raw_g_offset_x + shadow_raw_phosphor_diam + shadow_raw_phosphor_gap;
|
||||
static const float shadow_raw_r_offset_x = shadow_raw_b_offset_x + shadow_raw_phosphor_diam + shadow_raw_phosphor_gap;
|
||||
static const float3 shadow_norm_center_offsets_x = float3(
|
||||
shadow_raw_r_offset_x,
|
||||
shadow_raw_g_offset_x,
|
||||
shadow_raw_b_offset_x
|
||||
) / shadow_raw_triad_width;
|
||||
|
||||
static const float3 shadow_norm_center_offsets_y = float3(0.0, 0.0, 0.0);
|
||||
|
||||
static const float shadow_edge_tx = shadow_raw_phosphor_diam / 2;
|
||||
static const float shadow_edge_norm_tx = shadow_edge_tx / shadow_raw_triad_width;
|
||||
static const float shadow_edge_ty = shadow_raw_phosphor_diam / 2;
|
||||
// We draw the shadow mask as two sets of rows. To do that, we have to pretend the vertical gap is the size of a whole triad.
|
||||
// Then we need to halve the position of the phosphor edge.
|
||||
static const float shadow_edge_norm_ty = 0.5 * shadow_edge_ty / shadow_raw_triad_height;
|
||||
static const float shadow_norm_phosphor_rad = (shadow_raw_phosphor_diam/2) / shadow_raw_triad_width;
|
||||
|
||||
|
||||
/*
|
||||
* The SMALL GRILLE mask is composed of magenta and green stripes.
|
||||
* Sourced from http://filthypants.blogspot.com/2020/02/crt-shader-masks.html
|
||||
*
|
||||
* It has the following dimensions:
|
||||
* Stripes are 32 units wide.
|
||||
* Stripes in a triad are 0 units apart.
|
||||
* Triads are 0 units apart horizontally.
|
||||
*
|
||||
* Each triad has two quads, side-by-side and aligned.
|
||||
* Neighboring triads are offset vertically.
|
||||
* Below is an array of 2 triads.
|
||||
* x's denote magenta stripes, and o's denote green ones.
|
||||
*
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
*
|
||||
* The phosphors follow a MG pattern.
|
||||
* The left-most phosphor is magenta and offset by 16 units to the right.
|
||||
*/
|
||||
|
||||
static const float smallgrille_raw_stripe_width = 32;
|
||||
static const float smallgrille_raw_triad_width = 2*smallgrille_raw_stripe_width;
|
||||
|
||||
static const float smallgrille_raw_r_offset_x = 0.5 * smallgrille_raw_stripe_width;
|
||||
static const float smallgrille_raw_g_offset_x = smallgrille_raw_r_offset_x + smallgrille_raw_stripe_width;
|
||||
static const float smallgrille_raw_b_offset_x = smallgrille_raw_r_offset_x;
|
||||
static const float3 smallgrille_norm_center_offsets_x = float3(
|
||||
smallgrille_raw_r_offset_x,
|
||||
smallgrille_raw_g_offset_x,
|
||||
smallgrille_raw_b_offset_x
|
||||
) / smallgrille_raw_triad_width;
|
||||
|
||||
static const float smallgrille_edge_t = 0.5 * smallgrille_raw_stripe_width;
|
||||
static const float smallgrille_edge_norm_t = smallgrille_edge_t / smallgrille_raw_triad_width;
|
||||
|
||||
|
||||
/*
|
||||
* The SMALL SLOT mask is composed of magenta and green quads.
|
||||
* Sourced from http://filthypants.blogspot.com/2020/02/crt-shader-masks.html
|
||||
*
|
||||
* It has the following dimensions:
|
||||
* Quads are 32 units wide and 48 units tall.
|
||||
* Quads in a triad are 0 units apart.
|
||||
* Triads are 0 units apart horizontally and 16 units apart vertically.
|
||||
*
|
||||
* Each triad has two quads, side-by-side and aligned.
|
||||
* Neighboring triads are offset vertically.
|
||||
* Below is a 2x2 matrix of 4 triads.
|
||||
* x's denote magenta quads, and o's denote green ones.
|
||||
*
|
||||
* xxoo
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
* xxoo
|
||||
* xxoo
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
* xxoo
|
||||
*
|
||||
* The phosphors follow a MG pattern.
|
||||
* The upper-left-most phosphor is magenta and offset by 16 units to the right and 16 units down.
|
||||
*/
|
||||
|
||||
static const float smallslot_raw_quad_width = 32;
|
||||
static const float smallslot_raw_triad_width = 2*smallslot_raw_quad_width;
|
||||
|
||||
static const float smallslot_raw_quad_height = 1.5 * smallslot_raw_quad_width;
|
||||
static const float smallslot_raw_triad_vert_gap = 0.5 * smallslot_raw_quad_width;
|
||||
static const float smallslot_raw_triad_height = smallslot_raw_quad_height + smallslot_raw_triad_vert_gap;
|
||||
|
||||
static const float smallslot_aspect_ratio = smallslot_raw_triad_height / smallslot_raw_triad_width;
|
||||
|
||||
static const float smallslot_raw_r_offset_x = 0.5 * smallslot_raw_quad_width;
|
||||
static const float smallslot_raw_g_offset_x = smallslot_raw_r_offset_x + smallslot_raw_quad_width;
|
||||
static const float smallslot_raw_b_offset_x = smallslot_raw_r_offset_x;
|
||||
static const float3 smallslot_norm_center_offsets_x = float3(
|
||||
smallslot_raw_r_offset_x,
|
||||
smallslot_raw_g_offset_x,
|
||||
smallslot_raw_b_offset_x
|
||||
) / smallslot_raw_triad_width;
|
||||
|
||||
static const float3 smallslot_norm_center_offsets_y1 = 0.5 * smallslot_raw_quad_height / smallslot_raw_triad_height;
|
||||
static const float3 smallslot_norm_center_offsets_y2 = smallslot_norm_center_offsets_y1 + smallslot_raw_triad_vert_gap / smallslot_raw_triad_height;
|
||||
|
||||
static const float smallslot_edge_tx = 0.5 * smallslot_raw_quad_width;
|
||||
// We draw the slot mask as two sets of columns. To do that, we have to pretend the horizontal gap is the size of a whole triad.
|
||||
// Then we need to halve the position of the phosphor edge.
|
||||
static const float smallslot_edge_norm_tx = 0.5 * smallslot_edge_tx / smallslot_raw_triad_width;
|
||||
static const float smallslot_edge_ty = smallslot_raw_quad_height / 2;
|
||||
static const float smallslot_edge_norm_ty = smallslot_edge_ty / smallslot_raw_triad_height;
|
||||
|
||||
/*
|
||||
* The SMALL SHADOW mask is composed of magenta and green quads.
|
||||
* Sourced from http://filthypants.blogspot.com/2020/02/crt-shader-masks.html
|
||||
*
|
||||
* It has the following dimensions:
|
||||
* Quads are 17 units wide and 17 units tall.
|
||||
* Quads in a triad are 0 units apart.
|
||||
* Triads are 0 units apart horizontally and 0 units apart vertically.
|
||||
*
|
||||
* Each triad has two quads, side-by-side and aligned.
|
||||
* Neighboring triads are offset vertically.
|
||||
* Below is a 2x2 matrix of 4 triads.
|
||||
* x's denote magenta quads, and o's denote green ones.
|
||||
*
|
||||
* xxooxxoo
|
||||
* xxooxxoo
|
||||
* ooxxooxx
|
||||
* ooxxooxx
|
||||
*
|
||||
* The phosphors follow a MG pattern.
|
||||
* The upper-left-most phosphor is magenta and offset by 16 units to the right and 16 units down.
|
||||
*/
|
||||
|
||||
static const float smallshadow_raw_quad_width = 17;
|
||||
static const float smallshadow_raw_triad_width = 2 * smallshadow_raw_quad_width;
|
||||
|
||||
static const float smallshadow_raw_quad_height = 17;
|
||||
static const float smallshadow_raw_triad_height = smallshadow_raw_quad_height;
|
||||
|
||||
static const float smallshadow_aspect_ratio = smallshadow_raw_triad_height / smallshadow_raw_triad_width;
|
||||
|
||||
static const float smallshadow_raw_r_offset_x = 0.5 * smallshadow_raw_quad_width;
|
||||
static const float smallshadow_raw_g_offset_x = smallshadow_raw_r_offset_x + smallshadow_raw_quad_width;
|
||||
static const float smallshadow_raw_b_offset_x = smallshadow_raw_r_offset_x;
|
||||
static const float3 smallshadow_norm_center_offsets_x = float3(
|
||||
smallshadow_raw_r_offset_x,
|
||||
smallshadow_raw_g_offset_x,
|
||||
smallshadow_raw_b_offset_x
|
||||
) / smallshadow_raw_triad_width;
|
||||
|
||||
static const float3 smallshadow_norm_center_offsets_y = 0.5 * smallshadow_raw_triad_height;
|
||||
|
||||
static const float smallshadow_edge_tx = 0.5 * smallshadow_raw_quad_width;
|
||||
static const float smallshadow_edge_norm_tx = smallshadow_edge_tx / smallshadow_raw_triad_width;
|
||||
static const float smallshadow_edge_ty = 0.5 * smallshadow_raw_quad_height;
|
||||
// We draw the shadow mask as two sets of rows. To do that, we have to pretend the vertical gap is the size of a whole triad.
|
||||
// Then we need to halve the position of the phosphor edge.
|
||||
static const float smallshadow_edge_norm_ty = 0.5 * smallshadow_edge_ty / smallshadow_raw_triad_height;
|
||||
|
||||
|
||||
|
||||
|
||||
float get_selected_aspect_ratio() {
|
||||
float aspect_ratio;
|
||||
[flatten]
|
||||
if (mask_type == 0 || mask_type == 3) {
|
||||
aspect_ratio = scale_triad_height;
|
||||
}
|
||||
else if (mask_type == 1 || mask_type == 4) {
|
||||
aspect_ratio = scale_triad_height * slot_aspect_ratio;
|
||||
}
|
||||
else {
|
||||
aspect_ratio = scale_triad_height * shadow_aspect_ratio;
|
||||
}
|
||||
[flatten]
|
||||
switch (mask_type) {
|
||||
case 0:
|
||||
aspect_ratio = scale_triad_height;
|
||||
break;
|
||||
case 1:
|
||||
aspect_ratio = scale_triad_height * slot_aspect_ratio;
|
||||
break;
|
||||
case 2:
|
||||
aspect_ratio = scale_triad_height * shadow_aspect_ratio;
|
||||
break;
|
||||
case 3:
|
||||
aspect_ratio = scale_triad_height;
|
||||
break;
|
||||
case 4:
|
||||
aspect_ratio = scale_triad_height * smallslot_aspect_ratio;
|
||||
break;
|
||||
default:
|
||||
aspect_ratio = scale_triad_height * smallshadow_aspect_ratio;
|
||||
break;
|
||||
}
|
||||
|
||||
return aspect_ratio;
|
||||
}
|
||||
|
||||
float2 calc_triad_size() {
|
||||
const float aspect_ratio = get_selected_aspect_ratio();
|
||||
|
||||
[branch]
|
||||
if (mask_size_param == 0) {
|
||||
return float2(1, aspect_ratio) * mask_triad_width;
|
||||
}
|
||||
else {
|
||||
float triad_width = content_size.x * rcp(mask_num_triads_across);
|
||||
return float2(1, aspect_ratio) * triad_width;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
float2 calc_phosphor_viewport_frequency_factor() {
|
||||
const float aspect_ratio = get_selected_aspect_ratio();
|
||||
|
||||
float2 triad_size_factor;
|
||||
float2 num_triads_factor;
|
||||
[branch]
|
||||
if (geom_rotation_mode == 0 || geom_rotation_mode == 2) {
|
||||
triad_size_factor = content_size * rcp(mask_triad_width * float2(1, aspect_ratio));
|
||||
num_triads_factor = mask_num_triads_across * float2(1, content_size.y * rcp(content_size.x) * rcp(aspect_ratio));
|
||||
}
|
||||
else {
|
||||
triad_size_factor = content_size * rcp(mask_triad_width * float2(1, aspect_ratio)).yx;
|
||||
num_triads_factor = mask_num_triads_across * float2(1, content_size.y * rcp(content_size.x) * rcp(aspect_ratio)).yx;
|
||||
}
|
||||
|
||||
return ((mask_size_param == 0) ? triad_size_factor : num_triads_factor);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* We have a pulse wave f(t0_norm, p, q) = y0 with unknown p.
|
||||
* This function solves for p.
|
||||
*/
|
||||
#define calculate_phosphor_p_value(t0_norm, y0, q) (log((y0) * rcp(1 - (y0))) - (q) * (0.5 - 2*(t0_norm)))
|
||||
|
||||
/*
|
||||
* If we don't rescale the phosphor_thickness parameter, it has a logarithmic effect on the phosphor shape.
|
||||
* Rescaling it makes it look closer to a linear effect.
|
||||
*/
|
||||
#define linearize_phosphor_thickness_param(p) (1 - exp(-(p)))
|
||||
|
||||
|
||||
/*
|
||||
* Generates a grille mask with the desired resolution and sharpness.
|
||||
*/
|
||||
float3 get_phosphor_intensity_grille(
|
||||
const float2 texcoord,
|
||||
const float2 viewport_frequency_factor,
|
||||
const float2 grille_pq
|
||||
) {
|
||||
float3 center_offsets = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
grille_norm_center_offsets.bgr : grille_norm_center_offsets;
|
||||
|
||||
center_offsets += phosphor_offset_x * 0.5;
|
||||
|
||||
float3 theta = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets, 1);
|
||||
float3 alpha = exp((theta - 0.5) * grille_pq.y);
|
||||
return alpha * rcp(alpha + grille_pq.x);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Generates a slot mask with the desired resolution and sharpness.
|
||||
*/
|
||||
float3 get_phosphor_intensity_slot(
|
||||
const float2 texcoord,
|
||||
const float2 viewport_frequency_factor,
|
||||
const float2 slot_pq_x,
|
||||
const float2 slot_pq_y
|
||||
) {
|
||||
float3 center_offsets_x = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
slot_norm_center_offsets_x.bgr : slot_norm_center_offsets_x;
|
||||
float3 center_offsets_y = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
slot_norm_center_offsets_y.bgr : slot_norm_center_offsets_y;
|
||||
|
||||
center_offsets_x += phosphor_offset_x * 0.5;
|
||||
center_offsets_y += phosphor_offset_y * 0.5;
|
||||
|
||||
float3 theta_x1 = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets_x, 0.5);
|
||||
float3 alpha_x1 = exp((theta_x1 - 0.5) * slot_pq_x.y);
|
||||
alpha_x1 *= rcp(alpha_x1 + slot_pq_x.x);
|
||||
|
||||
float3 theta_x2 = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets_x + 1, 0.5);
|
||||
float3 alpha_x2 = exp((theta_x2 - 0.5) * slot_pq_x.y);
|
||||
alpha_x2 *= rcp(alpha_x2 + slot_pq_x.x);
|
||||
|
||||
float3 theta_y1 = triangle_wave(texcoord.y * viewport_frequency_factor.y - center_offsets_y, 1);
|
||||
float3 alpha_y1 = exp((theta_y1 - 0.5) * slot_pq_y.y);
|
||||
alpha_y1 *= rcp(alpha_y1 + slot_pq_y.x);
|
||||
|
||||
float3 theta_y2 = triangle_wave(texcoord.y * viewport_frequency_factor.y - center_offsets_y + 0.5, 1);
|
||||
float3 alpha_y2 = exp((theta_y2 - 0.5) * slot_pq_y.y);
|
||||
alpha_y2 *= rcp(alpha_y2 + slot_pq_y.x);
|
||||
|
||||
return alpha_x1 * alpha_y1 + alpha_x2 * alpha_y2;
|
||||
}
|
||||
|
||||
/*
|
||||
* Generates a shadow mask with the desired resolution and sharpness.
|
||||
*/
|
||||
float3 get_phosphor_intensity_shadow(
|
||||
const float2 texcoord,
|
||||
const float2 viewport_frequency_factor,
|
||||
const float2 shadow_q
|
||||
) {
|
||||
float3 center_offsets_x = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
shadow_norm_center_offsets_x.bgr : shadow_norm_center_offsets_x;
|
||||
float3 center_offsets_y = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
shadow_norm_center_offsets_y.bgr : shadow_norm_center_offsets_y;
|
||||
|
||||
center_offsets_x += phosphor_offset_x * 0.5;
|
||||
center_offsets_y += phosphor_offset_y * 0.5;
|
||||
|
||||
const float2 thickness_scaled = linearize_phosphor_thickness_param(phosphor_thickness);
|
||||
|
||||
const float3 x_adj = texcoord.x * viewport_frequency_factor.x - center_offsets_x;
|
||||
const float3 y_adj = texcoord.y * viewport_frequency_factor.y - center_offsets_y;
|
||||
|
||||
const float3 texcoord_x_periodic1 = shadow_norm_phosphor_rad * triangle_wave(x_adj * 3 - 0.5, 1.0);
|
||||
const float3 texcoord_x_periodic2 = shadow_norm_phosphor_rad * triangle_wave(x_adj * 3, 1.0);
|
||||
const float3 ty1 = sqrt(
|
||||
shadow_norm_phosphor_rad*shadow_norm_phosphor_rad - texcoord_x_periodic1*texcoord_x_periodic1
|
||||
);
|
||||
const float3 ty2 = sqrt(
|
||||
shadow_norm_phosphor_rad*shadow_norm_phosphor_rad - texcoord_x_periodic2*texcoord_x_periodic2
|
||||
);
|
||||
|
||||
const float shadow_px = exp(-calculate_phosphor_p_value(shadow_edge_norm_tx, thickness_scaled.x, shadow_q.x));
|
||||
const float3 shadow_py1 = exp(-calculate_phosphor_p_value(ty1 * 0.5 * rcp(shadow_aspect_ratio), thickness_scaled.y, shadow_q.y));
|
||||
const float3 shadow_py2 = exp(-calculate_phosphor_p_value(ty2 * 0.5 * rcp(shadow_aspect_ratio), thickness_scaled.y, shadow_q.y));
|
||||
|
||||
float3 theta_x1 = triangle_wave(x_adj, 1);
|
||||
float3 alpha_x1 = exp((theta_x1 - 0.5) * shadow_q.x);
|
||||
alpha_x1 *= rcp(alpha_x1 + shadow_px);
|
||||
|
||||
float3 theta_x2 = triangle_wave(x_adj + 0.5, 1);
|
||||
float3 alpha_x2 = exp((theta_x2 - 0.5) * shadow_q.x);
|
||||
alpha_x2 *= rcp(alpha_x2 + shadow_px);
|
||||
|
||||
float3 theta_y1 = triangle_wave(y_adj, 0.5);
|
||||
float3 alpha_y1 = exp((theta_y1 - 0.5) * shadow_q.y);
|
||||
alpha_y1 *= rcp(alpha_y1 + shadow_py1);
|
||||
|
||||
float3 theta_y2 = triangle_wave(y_adj + 1, 0.5);
|
||||
float3 alpha_y2 = exp((theta_y2 - 0.5) * shadow_q.y);
|
||||
alpha_y2 *= rcp(alpha_y2 + shadow_py2);
|
||||
|
||||
return alpha_x1 * alpha_y1 + alpha_x2 * alpha_y2;
|
||||
}
|
||||
|
||||
float3 get_phosphor_intensity_grille_small(
|
||||
const float2 texcoord,
|
||||
const float2 viewport_frequency_factor,
|
||||
const float2 grille_pq_x
|
||||
) {
|
||||
float3 center_offsets_x = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
smallgrille_norm_center_offsets_x.grg : smallgrille_norm_center_offsets_x;
|
||||
|
||||
center_offsets_x += phosphor_offset_x * 0.5;
|
||||
|
||||
float3 theta = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets_x, 1);
|
||||
float3 alpha = exp((theta - 0.5) * grille_pq_x.y);
|
||||
alpha *= rcp(alpha + grille_pq_x.x);
|
||||
|
||||
// Taking a sqrt here helps hide the gaps between the pixels when the triad size is small
|
||||
return sqrt(alpha);
|
||||
}
|
||||
|
||||
float3 get_phosphor_intensity_slot_small(
|
||||
const float2 texcoord,
|
||||
const float2 viewport_frequency_factor,
|
||||
const float2 slot_pq_x,
|
||||
const float2 slot_pq_y
|
||||
) {
|
||||
float3 center_offsets_x = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
smallslot_norm_center_offsets_x.grg : smallslot_norm_center_offsets_x;
|
||||
float3 center_offsets_y1 = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
smallslot_norm_center_offsets_y1.grg : smallslot_norm_center_offsets_y1;
|
||||
float3 center_offsets_y2 = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
smallslot_norm_center_offsets_y2.grg : smallslot_norm_center_offsets_y2;
|
||||
|
||||
center_offsets_x += phosphor_offset_x * 0.5;
|
||||
center_offsets_y1 += phosphor_offset_y * 0.5;
|
||||
center_offsets_y2 += phosphor_offset_y * 0.5;
|
||||
|
||||
float3 theta_x1 = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets_x, 0.5);
|
||||
float3 alpha_x1 = exp((theta_x1 - 0.5) * slot_pq_x.y);
|
||||
alpha_x1 *= rcp(alpha_x1 + slot_pq_x.x);
|
||||
|
||||
float3 theta_x2 = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets_x + 1, 0.5);
|
||||
float3 alpha_x2 = exp((theta_x2 - 0.5) * slot_pq_x.y);
|
||||
alpha_x2 *= rcp(alpha_x2 + slot_pq_x.x);
|
||||
|
||||
float3 theta_y1 = triangle_wave(texcoord.y * viewport_frequency_factor.y - center_offsets_y1, 1);
|
||||
float3 alpha_y1 = exp((theta_y1 - 0.5) * slot_pq_y.y);
|
||||
alpha_y1 *= rcp(alpha_y1 + slot_pq_y.x);
|
||||
|
||||
float3 theta_y2 = triangle_wave(texcoord.y * viewport_frequency_factor.y - center_offsets_y2 + 0.5, 1);
|
||||
float3 alpha_y2 = exp((theta_y2 - 0.5) * slot_pq_y.y);
|
||||
alpha_y2 *= rcp(alpha_y2 + slot_pq_y.x);
|
||||
|
||||
// Taking a sqrt here helps hide the gaps between the pixels when the triad size is small
|
||||
return (alpha_x1 * alpha_y1 + alpha_x2 * alpha_y2);
|
||||
}
|
||||
|
||||
float3 get_phosphor_intensity_shadow_small(
|
||||
const float2 texcoord,
|
||||
const float2 viewport_frequency_factor,
|
||||
const float2 shadow_pq_x,
|
||||
const float2 shadow_pq_y
|
||||
) {
|
||||
float3 center_offsets_x = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
smallshadow_norm_center_offsets_x.grg : smallshadow_norm_center_offsets_x;
|
||||
float3 center_offsets_y = (geom_rotation_mode == 2 || geom_rotation_mode == 3) ?
|
||||
smallshadow_norm_center_offsets_y.grg : smallshadow_norm_center_offsets_y;
|
||||
|
||||
center_offsets_x += phosphor_offset_x * 0.5;
|
||||
center_offsets_y += phosphor_offset_y * 0.5;
|
||||
|
||||
float3 theta_x1 = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets_x, 1);
|
||||
float3 alpha_x1 = exp((theta_x1 - 0.5) * shadow_pq_x.y);
|
||||
alpha_x1 *= rcp(alpha_x1 + shadow_pq_x.x);
|
||||
|
||||
float3 theta_x2 = triangle_wave(texcoord.x * viewport_frequency_factor.x - center_offsets_x + 0.5, 1);
|
||||
float3 alpha_x2 = exp((theta_x2 - 0.5) * shadow_pq_x.y);
|
||||
alpha_x2 *= rcp(alpha_x2 + shadow_pq_x.x);
|
||||
|
||||
float3 theta_y1 = triangle_wave(texcoord.y * viewport_frequency_factor.y - center_offsets_y, 0.5);
|
||||
float3 alpha_y1 = exp((theta_y1 - 0.5) * shadow_pq_y.y);
|
||||
alpha_y1 *= rcp(alpha_y1 + shadow_pq_y.x);
|
||||
|
||||
float3 theta_y2 = triangle_wave(texcoord.y * viewport_frequency_factor.y - center_offsets_y + 1, 0.5);
|
||||
float3 alpha_y2 = exp((theta_y2 - 0.5) * shadow_pq_y.y);
|
||||
alpha_y2 *= rcp(alpha_y2 + shadow_pq_y.x);
|
||||
|
||||
// Taking a sqrt here helps hide the gaps between the pixels when the triad size is small
|
||||
return sqrt(alpha_x1 * alpha_y1 + alpha_x2 * alpha_y2);
|
||||
}
|
||||
|
||||
#endif // _PHOSHOR_MASK_CALCULATIONS_H
|
@ -0,0 +1,243 @@
|
||||
|
||||
#ifndef _QUAD_PIXEL_COMMUNICATION_H
|
||||
#define _QUAD_PIXEL_COMMUNICATION_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey*
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
///////////////////////////////// DISCLAIMER /////////////////////////////////
|
||||
|
||||
// *This code was inspired by "Shader Amortization using Pixel Quad Message
|
||||
// Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
|
||||
// is not to plagiarize his fundamentally similar code and assert my own
|
||||
// copyright, but the algorithmic helper functions require so little code that
|
||||
// implementations can't vary by much except bugfixes and conventions. I just
|
||||
// wanted to license my own particular code here to avoid ambiguity and make it
|
||||
// clear that as far as I'm concerned, people can do as they please with it.
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// Given screen pixel numbers, derive a "quad vector" describing a fragment's
|
||||
// position in its 2x2 pixel quad. Given that vector, obtain the values of any
|
||||
// variable at neighboring fragments.
|
||||
// Requires: Using this file in general requires:
|
||||
// 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) The GPU driver is using fine/high-quality derivatives.
|
||||
// Functions will give incorrect results if this is not true,
|
||||
// so a test function is included.
|
||||
|
||||
|
||||
///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
|
||||
|
||||
float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy)
|
||||
{
|
||||
// Requires: Two measures of the current fragment's output pixel number
|
||||
// in the range ([0, output_size.x), [0, output_size.y)):
|
||||
// 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
|
||||
// 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
|
||||
// Returns: Two measures of the fragment's position in its 2x2 quad:
|
||||
// 1.) The .xy components are its 2x2 placement with respect to
|
||||
// uv direction (the origin (0, 0) is at the top-left):
|
||||
// top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
|
||||
// bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
|
||||
// You need this to arrange/weight shared texture samples.
|
||||
// 2.) The .zw components are its 2x2 placement with respect to
|
||||
// screen xy direction (position); the origin varies.
|
||||
// quad_gather needs this measure to work correctly.
|
||||
// Note: quad_vector.zw = quad_vector.xy * float2(
|
||||
// ddx(output_pixel_num_wrt_uvxy.x),
|
||||
// ddy(output_pixel_num_wrt_uvxy.y));
|
||||
// Caveats: This function assumes the GPU driver always starts 2x2 pixel
|
||||
// quads at even pixel numbers. This assumption can be wrong
|
||||
// for odd output resolutions (nondeterministically so).
|
||||
float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
|
||||
float4 quad_vector = pixel_odd * 2.0 - float4(1.0, 1.0, 1.0, 1.0);
|
||||
return quad_vector;
|
||||
}
|
||||
|
||||
float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy)
|
||||
{
|
||||
// Requires: Same as get_quad_vector_naive() (see that first).
|
||||
// Returns: Same as get_quad_vector_naive() (see that first), but it's
|
||||
// correct even if the 2x2 pixel quad starts at an odd pixel,
|
||||
// which can occur at odd resolutions.
|
||||
float4 quad_vector_guess =
|
||||
get_quad_vector_naive(output_pixel_num_wrt_uvxy);
|
||||
// If quad_vector_guess.zw doesn't increase with screen xy, we know
|
||||
// the 2x2 pixel quad starts at an odd pixel:
|
||||
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
|
||||
ddy(quad_vector_guess.w));
|
||||
return quad_vector_guess * odd_start_mirror.xyxy;
|
||||
}
|
||||
|
||||
float4 get_quad_vector(float2 output_pixel_num_wrt_uv)
|
||||
{
|
||||
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) output_pixel_num_wrt_uv must increase with uv coords and
|
||||
// measure the current fragment's output pixel number in:
|
||||
// ([0, output_size.x), [0, output_size.y))
|
||||
// Returns: Same as get_quad_vector_naive() (see that first), but it's
|
||||
// correct even if the 2x2 pixel quad starts at an odd pixel,
|
||||
// which can occur at odd resolutions.
|
||||
// Caveats: This function requires less information than the version
|
||||
// taking a float4, but it's potentially slower.
|
||||
// Do screen coords increase with or against uv? Get the direction
|
||||
// with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
|
||||
float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
|
||||
ddy(output_pixel_num_wrt_uv.y));
|
||||
float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
|
||||
float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5, 0.5)) * 2.0;
|
||||
float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
|
||||
// If quad_vector_screen_guess doesn't increase with screen xy, we know
|
||||
// the 2x2 pixel quad starts at an odd pixel:
|
||||
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
|
||||
ddy(quad_vector_screen_guess.y));
|
||||
float4 quad_vector_guess = float4(
|
||||
quad_vector_uv_guess, quad_vector_screen_guess);
|
||||
return quad_vector_guess * odd_start_mirror.xyxy;
|
||||
}
|
||||
|
||||
void quad_gather(float4 quad_vector, float4 curr,
|
||||
out float4 adjx, out float4 adjy, out float4 diag)
|
||||
{
|
||||
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) The GPU driver is using fine/high-quality derivatives.
|
||||
// 3.) quad_vector describes the current fragment's location in
|
||||
// its 2x2 pixel quad using get_quad_vector()'s conventions.
|
||||
// 4.) curr is any vector you wish to get neighboring values of.
|
||||
// Returns: Values of an input vector (curr) at neighboring fragments
|
||||
// adjacent x, adjacent y, and diagonal (via out parameters).
|
||||
adjx = curr - ddx(curr) * quad_vector.z;
|
||||
adjy = curr - ddy(curr) * quad_vector.w;
|
||||
diag = adjx - ddy(adjx) * quad_vector.w;
|
||||
}
|
||||
|
||||
void quad_gather(float4 quad_vector, float3 curr,
|
||||
out float3 adjx, out float3 adjy, out float3 diag)
|
||||
{
|
||||
// Float3 version
|
||||
adjx = curr - ddx(curr) * quad_vector.z;
|
||||
adjy = curr - ddy(curr) * quad_vector.w;
|
||||
diag = adjx - ddy(adjx) * quad_vector.w;
|
||||
}
|
||||
|
||||
void quad_gather(float4 quad_vector, float2 curr,
|
||||
out float2 adjx, out float2 adjy, out float2 diag)
|
||||
{
|
||||
// Float2 version
|
||||
adjx = curr - ddx(curr) * quad_vector.z;
|
||||
adjy = curr - ddy(curr) * quad_vector.w;
|
||||
diag = adjx - ddy(adjx) * quad_vector.w;
|
||||
}
|
||||
|
||||
float4 quad_gather(float4 quad_vector, float curr)
|
||||
{
|
||||
// Float version:
|
||||
// Returns: return.x == current
|
||||
// return.y == adjacent x
|
||||
// return.z == adjacent y
|
||||
// return.w == diagonal
|
||||
float4 all = float4(curr, curr, curr, curr);
|
||||
all.y = all.x - ddx(all.x) * quad_vector.z;
|
||||
all.zw = all.xy - ddy(all.xy) * quad_vector.w;
|
||||
return all;
|
||||
}
|
||||
|
||||
float4 quad_gather_sum(float4 quad_vector, float4 curr)
|
||||
{
|
||||
// Requires: Same as quad_gather()
|
||||
// Returns: Sum of an input vector (curr) at all fragments in a quad.
|
||||
float4 adjx, adjy, diag;
|
||||
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||||
return (curr + adjx + adjy + diag);
|
||||
}
|
||||
|
||||
float3 quad_gather_sum(float4 quad_vector, float3 curr)
|
||||
{
|
||||
// Float3 version:
|
||||
float3 adjx, adjy, diag;
|
||||
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||||
return (curr + adjx + adjy + diag);
|
||||
}
|
||||
|
||||
float2 quad_gather_sum(float4 quad_vector, float2 curr)
|
||||
{
|
||||
// Float2 version:
|
||||
float2 adjx, adjy, diag;
|
||||
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||||
return (curr + adjx + adjy + diag);
|
||||
}
|
||||
|
||||
float quad_gather_sum(float4 quad_vector, float curr)
|
||||
{
|
||||
// Float version:
|
||||
float4 all_values = quad_gather(quad_vector, curr);
|
||||
return (all_values.x + all_values.y + all_values.z + all_values.w);
|
||||
}
|
||||
|
||||
bool fine_derivatives_working(float4 quad_vector, float4 curr)
|
||||
{
|
||||
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) quad_vector describes the current fragment's location in
|
||||
// its 2x2 pixel quad using get_quad_vector()'s conventions.
|
||||
// 3.) curr must be a test vector with non-constant derivatives
|
||||
// (its value should change nonlinearly across fragments).
|
||||
// Returns: true if fine/hybrid/high-quality derivatives are used, or
|
||||
// false if coarse derivatives are used or inconclusive
|
||||
// Usage: Test whether quad-pixel communication is working!
|
||||
// Method: We can confirm fine derivatives are used if the following
|
||||
// holds (ever, for any value at any fragment):
|
||||
// (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
|
||||
// The more values we test (e.g. test a float4 two ways), the
|
||||
// easier it is to demonstrate fine derivatives are working.
|
||||
// TODO: Check for floating point exact comparison issues!
|
||||
float4 ddx_curr = ddx(curr);
|
||||
float4 ddy_curr = ddy(curr);
|
||||
float4 adjx = curr - ddx_curr * quad_vector.z;
|
||||
float4 adjy = curr - ddy_curr * quad_vector.w;
|
||||
bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w));
|
||||
bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w));
|
||||
return any(bool2(ddy_different, ddx_different));
|
||||
}
|
||||
|
||||
bool fine_derivatives_working_fast(float4 quad_vector, float curr)
|
||||
{
|
||||
// Requires: Same as fine_derivatives_working()
|
||||
// Returns: Same as fine_derivatives_working()
|
||||
// Usage: This is faster than fine_derivatives_working() but more
|
||||
// likely to return false negatives, so it's less useful for
|
||||
// offline testing/debugging. It's also useless as the basis
|
||||
// for dynamic runtime branching as of May 2014: Derivatives
|
||||
// (and quad-pixel communication) are currently disallowed in
|
||||
// branches. However, future GPU's may allow you to use them
|
||||
// in dynamic branches if you promise the branch condition
|
||||
// evaluates the same for every fragment in the quad (and/or if
|
||||
// the driver enforces that promise by making a single fragment
|
||||
// control branch decisions). If that ever happens, this
|
||||
// version may become a more economical choice.
|
||||
float ddx_curr = ddx(curr);
|
||||
float ddy_curr = ddy(curr);
|
||||
float adjx = curr - ddx_curr * quad_vector.z;
|
||||
return (ddy_curr != ddy(adjx));
|
||||
}
|
||||
|
||||
#endif // _QUAD_PIXEL_COMMUNICATION_H
|
@ -0,0 +1,501 @@
|
||||
#ifndef _SCANLINE_FUNCTIONS_H
|
||||
#define _SCANLINE_FUNCTIONS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// crt-royale-reshade: A port of TroggleMonkey's crt-royale from libretro to ReShade.
|
||||
// Copyright (C) 2020 Alex Gunter <akg7634@gmail.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
||||
|
||||
#include "bind-shader-params.fxh"
|
||||
#include "gamma-management.fxh"
|
||||
#include "special-functions.fxh"
|
||||
|
||||
//////////////////////////////// END INCLUDES ////////////////////////////////
|
||||
|
||||
///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
|
||||
|
||||
float2 round_coord(
|
||||
const float2 c,
|
||||
const float2 starting_position,
|
||||
const float2 bin_size
|
||||
) {
|
||||
const float2 adj_c = c - starting_position;
|
||||
return c - fmod(adj_c, bin_size) + bin_size * 0.5;
|
||||
}
|
||||
|
||||
|
||||
// Use preproc defs for these, so they work for arbitrary choices of float1/2/3/4
|
||||
#define triangle_wave(t, f) abs(1 - 2*frac((t) * (f)))
|
||||
|
||||
#define sawtooth_incr_wave(t, f) frac((t) * (f))
|
||||
|
||||
// using fmod(-t*f, 1.0) outputs 0 at t == 0, but I want it to output 1
|
||||
#define sawtooth_decr_wave(t, f) 1 - frac((t) * (f))
|
||||
|
||||
|
||||
struct InterpolationFieldData {
|
||||
float triangle_wave_freq;
|
||||
bool field_parity;
|
||||
bool scanline_parity;
|
||||
bool wrong_field;
|
||||
};
|
||||
|
||||
InterpolationFieldData precalc_interpolation_field_data(float2 texcoord) {
|
||||
InterpolationFieldData data;
|
||||
|
||||
data.triangle_wave_freq = 2;
|
||||
|
||||
const float field_wave = triangle_wave(texcoord.y + rcp(2*data.triangle_wave_freq), data.triangle_wave_freq * 0.5) * 2 - 1;
|
||||
data.scanline_parity = field_wave >= 0;
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
InterpolationFieldData calc_interpolation_field_data(float2 texcoord, float scale) {
|
||||
InterpolationFieldData data;
|
||||
|
||||
data.triangle_wave_freq = scale * rcp(scanline_thickness);
|
||||
// data.triangle_wave_freq = content_size.y * rcp(scanline_thickness);
|
||||
|
||||
const bool frame_count_parity = (frame_count % 2 == 1) && (scanline_deinterlacing_mode != 1);
|
||||
data.field_parity = (frame_count_parity && !interlace_back_field_first) || (!frame_count_parity && interlace_back_field_first);
|
||||
|
||||
const float field_wave = triangle_wave(texcoord.y + rcp(2*data.triangle_wave_freq), data.triangle_wave_freq * 0.5) * 2 - 1;
|
||||
data.scanline_parity = field_wave >= 0;
|
||||
|
||||
const bool wrong_field_raw = (data.scanline_parity && !data.field_parity) || (!data.scanline_parity && data.field_parity);
|
||||
data.wrong_field = enable_interlacing && wrong_field_raw;
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
float get_gaussian_sigma(const float color, const float sigma_range)
|
||||
{
|
||||
// Requires: Globals:
|
||||
// 1.) gaussian_beam_min_sigma and gaussian_beam_max_sigma are global floats
|
||||
// containing the desired minimum and maximum beam standard
|
||||
// deviations, for dim and bright colors respectively.
|
||||
// 2.) gaussian_beam_max_sigma must be > 0.0
|
||||
// 3.) gaussian_beam_min_sigma must be in (0.0, gaussian_beam_max_sigma]
|
||||
// 4.) gaussian_beam_spot_power must be defined as a global float.
|
||||
// Parameters:
|
||||
// 1.) color is the underlying source color along a scanline
|
||||
// 2.) sigma_range = gaussian_beam_max_sigma - gaussian_beam_min_sigma; we take
|
||||
// sigma_range as a parameter to avoid repeated computation
|
||||
// when beam_{min, max}_sigma are runtime shader parameters
|
||||
// Optional: Users may set beam_spot_shape_function to 1 to define the
|
||||
// inner f(color) subfunction (see below) as:
|
||||
// f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
|
||||
// Otherwise (technically, if beam_spot_shape_function < 0.5):
|
||||
// f(color) = pow(color, gaussian_beam_spot_power)
|
||||
// Returns: The standard deviation of the Gaussian beam for "color:"
|
||||
// sigma = gaussian_beam_min_sigma + sigma_range * f(color)
|
||||
// Details/Discussion:
|
||||
// The beam's spot shape vaguely resembles an aspect-corrected f() in the
|
||||
// range [0, 1] (not quite, but it's related). f(color) = color makes
|
||||
// spots look like diamonds, and a spherical function or cube balances
|
||||
// between variable width and a soft/realistic shape. A gaussian_beam_spot_power
|
||||
// > 1.0 can produce an ugly spot shape and more initial clipping, but the
|
||||
// final shape also differs based on the horizontal resampling filter and
|
||||
// the phosphor bloom. For instance, resampling horizontally in nonlinear
|
||||
// light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
|
||||
// shape, but a sixth root is still quite soft. A power function (default
|
||||
// 1.0/3.0 gaussian_beam_spot_power) is most flexible, but a fixed spherical curve
|
||||
// has the highest variability without an awful spot shape.
|
||||
//
|
||||
// gaussian_beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
|
||||
// difference from gaussian_beam_max_sigma affects beam width variability. It only
|
||||
// affects clipping [for pure Gaussians] if gaussian_beam_spot_power > 1.0 (which is
|
||||
// a conservative estimate for a more complex constraint).
|
||||
//
|
||||
// gaussian_beam_max_sigma affects clipping and increasing scanline width/softness
|
||||
// as color increases. The wider this is, the more scanlines need to be
|
||||
// evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
|
||||
// at which the first unused scanline always has a weight < 1.0/255.0 is:
|
||||
// num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
|
||||
// num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
|
||||
// num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
|
||||
// num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
|
||||
// num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
|
||||
// Generalized Gaussians permit more leeway here as steepness increases.
|
||||
if(beam_spot_shape_function < 0.5)
|
||||
{
|
||||
// Use a power function:
|
||||
return gaussian_beam_min_sigma + sigma_range * pow(color, gaussian_beam_spot_power);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use a spherical function:
|
||||
const float color_minus_1 = color - 1;
|
||||
return gaussian_beam_min_sigma + sigma_range * sqrt(1.0 - color_minus_1*color_minus_1);
|
||||
}
|
||||
}
|
||||
|
||||
float get_generalized_gaussian_beta(const float color, const float shape_range)
|
||||
{
|
||||
// Requires: Globals:
|
||||
// 1.) gaussian_beam_min_shape and gaussian_beam_max_shape are global floats
|
||||
// containing the desired min/max generalized Gaussian
|
||||
// beta parameters, for dim and bright colors respectively.
|
||||
// 2.) gaussian_beam_max_shape must be >= 2.0
|
||||
// 3.) gaussian_beam_min_shape must be in [2.0, gaussian_beam_max_shape]
|
||||
// 4.) gaussian_beam_shape_power must be defined as a global float.
|
||||
// Parameters:
|
||||
// 1.) color is the underlying source color along a scanline
|
||||
// 2.) shape_range = gaussian_beam_max_shape - gaussian_beam_min_shape; we take
|
||||
// shape_range as a parameter to avoid repeated computation
|
||||
// when beam_{min, max}_shape are runtime shader parameters
|
||||
// Returns: The type-I generalized Gaussian "shape" parameter beta for
|
||||
// the given color.
|
||||
// Details/Discussion:
|
||||
// Beta affects the scanline distribution as follows:
|
||||
// a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
|
||||
// b.) beta == 2.0 just degenerates to a Gaussian
|
||||
// c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
|
||||
// than a Gaussian. Whereas high sigmas widen and soften peaks, high
|
||||
// beta widen and sharpen peaks at the risk of aliasing.
|
||||
// Unlike high gaussian_beam_spot_powers, high gaussian_beam_shape_powers actually soften shape
|
||||
// transitions, whereas lower ones sharpen them (at the risk of aliasing).
|
||||
return gaussian_beam_min_shape + shape_range * pow(color, gaussian_beam_shape_power);
|
||||
}
|
||||
|
||||
float3 get_raw_interpolated_color(const float3 color0,
|
||||
const float3 color1, const float3 color2, const float3 color3,
|
||||
const float4 weights)
|
||||
{
|
||||
// Use max to avoid bizarre artifacts from negative colors:
|
||||
const float4x3 mtrx = float4x3(color0, color1, color2, color3);
|
||||
const float3 m = mul(weights, mtrx);
|
||||
return max(m, 0.0);
|
||||
}
|
||||
|
||||
float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
|
||||
const float3 color2, const float3 color3, const float4 weights)
|
||||
{
|
||||
// Requires: 1.) Requirements of include/gamma-management.h must be met:
|
||||
// intermediate_gamma must be globally defined, and input
|
||||
// colors are interpreted as linear RGB unless you #define
|
||||
// GAMMA_ENCODE_EVERY_FBO (in which case they are
|
||||
// interpreted as gamma-encoded with intermediate_gamma).
|
||||
// 2.) color0-3 are colors sampled from a texture with tex2D().
|
||||
// They are interpreted as defined in requirement 1.
|
||||
// 3.) weights contains weights for each color, summing to 1.0.
|
||||
// 4.) beam_horiz_linear_rgb_weight must be defined as a global
|
||||
// float in [0.0, 1.0] describing how much blending should
|
||||
// be done in linear RGB (rest is gamma-corrected RGB).
|
||||
// 5.) _RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
|
||||
// if beam_horiz_linear_rgb_weight is anything other than a
|
||||
// static constant, or we may try branching at runtime
|
||||
// without dynamic branches allowed (slow).
|
||||
// Returns: Return an interpolated color lookup between the four input
|
||||
// colors based on the weights in weights. The final color will
|
||||
// be a linear RGB value, but the blending will be done as
|
||||
// indicated above.
|
||||
const float intermediate_gamma = get_intermediate_gamma();
|
||||
const float inv_intermediate_gamma = 1.0 / intermediate_gamma;
|
||||
// Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
|
||||
// profile allows dynamic branches (faster than computing extra pows):
|
||||
#if !_RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
#else
|
||||
#if _DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
#endif
|
||||
#endif
|
||||
#ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
// beam_horiz_linear_rgb_weight is static, so we can branch:
|
||||
#ifdef GAMMA_ENCODE_EVERY_FBO
|
||||
const float3 gamma_mixed_color = pow(
|
||||
get_raw_interpolated_color(color0, color1, color2, color3, weights),
|
||||
intermediate_gamma);
|
||||
if(beam_horiz_linear_rgb_weight > 0.0)
|
||||
{
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, intermediate_gamma),
|
||||
pow(color1, intermediate_gamma),
|
||||
pow(color2, intermediate_gamma),
|
||||
pow(color3, intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight);
|
||||
}
|
||||
else
|
||||
{
|
||||
return gamma_mixed_color;
|
||||
}
|
||||
#else
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights);
|
||||
if(beam_horiz_linear_rgb_weight < 1.0)
|
||||
{
|
||||
const float3 gamma_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, inv_intermediate_gamma),
|
||||
pow(color1, inv_intermediate_gamma),
|
||||
pow(color2, inv_intermediate_gamma),
|
||||
pow(color3, inv_intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight);
|
||||
}
|
||||
else
|
||||
{
|
||||
return linear_mixed_color;
|
||||
}
|
||||
#endif // GAMMA_ENCODE_EVERY_FBO
|
||||
#else
|
||||
#ifdef GAMMA_ENCODE_EVERY_FBO
|
||||
// Inputs: color0-3 are colors in gamma-encoded RGB.
|
||||
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights), intermediate_gamma);
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, intermediate_gamma),
|
||||
pow(color1, intermediate_gamma),
|
||||
pow(color2, intermediate_gamma),
|
||||
pow(color3, intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color, beam_horiz_linear_rgb_weight);
|
||||
#else
|
||||
// Inputs: color0-3 are colors in linear RGB.
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights);
|
||||
const float3 gamma_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, inv_intermediate_gamma),
|
||||
pow(color1, inv_intermediate_gamma),
|
||||
pow(color2, inv_intermediate_gamma),
|
||||
pow(color3, inv_intermediate_gamma),
|
||||
weights);
|
||||
// wtf fixme
|
||||
// const float beam_horiz_linear_rgb_weight1 = 1.0;
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
#endif // GAMMA_ENCODE_EVERY_FBO
|
||||
#endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
}
|
||||
|
||||
float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv,
|
||||
const float2 uv_step_x, const float4 weights)
|
||||
{
|
||||
// Requires: 1.) scanline_uv must be vertically snapped to the caller's
|
||||
// desired line or scanline and horizontally snapped to the
|
||||
// texel just left of the output pixel (color1)
|
||||
// 2.) uv_step_x must contain the horizontal uv distance
|
||||
// between texels.
|
||||
// 3.) weights must contain interpolation filter weights for
|
||||
// color0, color1, color2, and color3, where color1 is just
|
||||
// left of the output pixel.
|
||||
// Returns: Return a horizontally interpolated texture lookup using 2-4
|
||||
// nearby texels, according to weights and the conventions of
|
||||
// get_interpolated_linear_color().
|
||||
// We can ignore the outside texture lookups for Quilez resampling.
|
||||
const float3 color1 = tex2D_linearize(tex, scanline_uv, get_input_gamma()).rgb;
|
||||
const float3 color2 = tex2D_linearize(tex, scanline_uv + uv_step_x, get_input_gamma()).rgb;
|
||||
float3 color0 = float3(0.0, 0.0, 0.0);
|
||||
float3 color3 = float3(0.0, 0.0, 0.0);
|
||||
if(beam_horiz_filter > 0.5)
|
||||
{
|
||||
color0 = tex2D_linearize(tex, scanline_uv - uv_step_x, get_input_gamma()).rgb;
|
||||
color3 = tex2D_linearize(tex, scanline_uv + 2.0 * uv_step_x, get_input_gamma()).rgb;
|
||||
}
|
||||
// Sample the texture as-is, whether it's linear or gamma-encoded:
|
||||
// get_interpolated_linear_color() will handle the difference.
|
||||
return get_interpolated_linear_color(color0, color1, color2, color3, weights);
|
||||
}
|
||||
|
||||
float3 sample_single_scanline_horizontal(const sampler2D tex,
|
||||
const float2 tex_uv, const float2 tex_size,
|
||||
const float2 texture_size_inv)
|
||||
{
|
||||
// TODO: Add function requirements.
|
||||
// Snap to the previous texel and get sample dists from 2/4 nearby texels:
|
||||
const float2 curr_texel = tex_uv * tex_size;
|
||||
// Use under_half to fix a rounding bug right around exact texel locations.
|
||||
const float2 prev_texel = floor(curr_texel - under_half) + 0.5;
|
||||
const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
|
||||
const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
|
||||
const float prev_dist = curr_texel.x - prev_texel_hor.x;
|
||||
const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
|
||||
1.0 - prev_dist, 2.0 - prev_dist);
|
||||
// Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
|
||||
float4 weights;
|
||||
if (beam_horiz_filter < 0.5) {
|
||||
// None:
|
||||
weights = float4(0, 1, 0, 0);
|
||||
}
|
||||
else if(beam_horiz_filter < 1.5)
|
||||
{
|
||||
// Quilez:
|
||||
const float x = sample_dists.y;
|
||||
const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
|
||||
weights = float4(0.0, 1.0 - w2, w2, 0.0);
|
||||
}
|
||||
else if(beam_horiz_filter < 2.5)
|
||||
{
|
||||
// Gaussian:
|
||||
float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
|
||||
weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Lanczos2:
|
||||
const float4 pi_dists = FIX_ZERO(sample_dists * pi);
|
||||
weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
|
||||
(pi_dists * pi_dists);
|
||||
}
|
||||
// Ensure the weight sum == 1.0:
|
||||
const float4 final_weights = weights/dot(weights, float4(1.0, 1.0, 1.0, 1.0));
|
||||
// Get the interpolated horizontal scanline color:
|
||||
const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
|
||||
return get_scanline_color(
|
||||
tex, prev_texel_hor_uv, uv_step_x, final_weights);
|
||||
}
|
||||
|
||||
float3 sample_rgb_scanline(
|
||||
const sampler2D tex,
|
||||
const float2 tex_uv, const float2 tex_size,
|
||||
const float2 texture_size_inv
|
||||
) {
|
||||
if (beam_misconvergence) {
|
||||
const float3 convergence_offsets_rgb_x = get_convergence_offsets_x_vector();
|
||||
const float3 convergence_offsets_rgb_y = get_convergence_offsets_y_vector();
|
||||
|
||||
const float3 offset_u_rgb = convergence_offsets_rgb_x * texture_size_inv.x;
|
||||
const float3 offset_v_rgb = convergence_offsets_rgb_y * texture_size_inv.y;
|
||||
|
||||
const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, offset_v_rgb.r);
|
||||
const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, offset_v_rgb.g);
|
||||
const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, offset_v_rgb.b);
|
||||
|
||||
/**/
|
||||
const float4 sample_r = tex2D(tex, scanline_uv_r);
|
||||
const float4 sample_g = tex2D(tex, scanline_uv_g);
|
||||
const float4 sample_b = tex2D(tex, scanline_uv_b);
|
||||
/**/
|
||||
|
||||
/*
|
||||
const float3 sample_r = sample_single_scanline_horizontal(
|
||||
tex, scanline_uv_r, tex_size, texture_size_inv);
|
||||
const float3 sample_g = sample_single_scanline_horizontal(
|
||||
tex, scanline_uv_g, tex_size, texture_size_inv);
|
||||
const float3 sample_b = sample_single_scanline_horizontal(
|
||||
tex, scanline_uv_b, tex_size, texture_size_inv);
|
||||
*/
|
||||
|
||||
return float3(sample_r.r, sample_g.g, sample_b.b);
|
||||
}
|
||||
else {
|
||||
// return tex2D(tex, tex_uv).rgb;
|
||||
return sample_single_scanline_horizontal(tex, tex_uv, tex_size, texture_size_inv);
|
||||
}
|
||||
}
|
||||
|
||||
float3 sample_rgb_scanline_horizontal(const sampler2D tex,
|
||||
const float2 tex_uv, const float2 tex_size,
|
||||
const float2 texture_size_inv)
|
||||
{
|
||||
// TODO: Add function requirements.
|
||||
// Rely on a helper to make convergence easier.
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
const float3 convergence_offsets_rgb = get_convergence_offsets_x_vector();
|
||||
const float3 offset_u_rgb = convergence_offsets_rgb * texture_size_inv.xxx;
|
||||
const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
|
||||
const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
|
||||
const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
|
||||
const float3 sample_r = sample_single_scanline_horizontal(
|
||||
tex, scanline_uv_r, tex_size, texture_size_inv);
|
||||
const float3 sample_g = sample_single_scanline_horizontal(
|
||||
tex, scanline_uv_g, tex_size, texture_size_inv);
|
||||
const float3 sample_b = sample_single_scanline_horizontal(
|
||||
tex, scanline_uv_b, tex_size, texture_size_inv);
|
||||
return float3(sample_r.r, sample_g.g, sample_b.b);
|
||||
}
|
||||
else
|
||||
{
|
||||
return sample_single_scanline_horizontal(tex, tex_uv, tex_size, texture_size_inv);
|
||||
}
|
||||
}
|
||||
|
||||
float3 get_averaged_scanline_sample(
|
||||
sampler2D tex, const float2 texcoord,
|
||||
const float scanline_start_y, const float v_step_y,
|
||||
const float input_gamma
|
||||
) {
|
||||
// Sample `scanline_thickness` vertically-contiguous pixels and average them.
|
||||
float3 interpolated_line = 0.0;
|
||||
for (int i = 0; i < scanline_thickness; i++) {
|
||||
float4 coord = float4(texcoord.x, scanline_start_y + i * v_step_y, 0, 0);
|
||||
interpolated_line += tex2Dlod_linearize(tex, coord, input_gamma).rgb;
|
||||
}
|
||||
interpolated_line /= float(scanline_thickness);
|
||||
|
||||
return interpolated_line;
|
||||
}
|
||||
|
||||
float get_beam_strength(float dist, float color,
|
||||
const float sigma_range, const float shape_range)
|
||||
{
|
||||
// entry point in original is scanline_contrib()
|
||||
// this is based on scanline_gaussian_sampled_contrib() from original
|
||||
|
||||
// See scanline_gaussian_integral_contrib() for detailed comments!
|
||||
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
|
||||
const float sigma = get_gaussian_sigma(color, sigma_range);
|
||||
// Avoid repeated divides:
|
||||
const float sigma_inv = 1.0 / sigma;
|
||||
const float inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
|
||||
const float outer_denom_inv = sigma_inv/sqrt(2.0*pi);
|
||||
|
||||
return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
|
||||
}
|
||||
|
||||
float get_gaussian_beam_strength(
|
||||
float dist,
|
||||
float color,
|
||||
const float sigma_range,
|
||||
const float shape_range
|
||||
) {
|
||||
// entry point in original is scanline_contrib()
|
||||
// this is based on scanline_generalized_gaussian_sampled_contrib() from original
|
||||
|
||||
// See scanline_generalized_gaussian_integral_contrib() for details!
|
||||
// generalized sample =
|
||||
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
|
||||
const float alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
|
||||
const float beta = get_generalized_gaussian_beta(color, shape_range);
|
||||
// Avoid repeated divides:
|
||||
const float alpha_inv = 1.0 / alpha;
|
||||
const float beta_inv = 1.0 / beta;
|
||||
const float scale = color * beta * 0.5 * alpha_inv / gamma_impl(beta_inv, beta);
|
||||
|
||||
return scale * exp(-pow(abs(dist*alpha_inv), beta));
|
||||
}
|
||||
|
||||
float get_linear_beam_strength(
|
||||
const float dist,
|
||||
const float color,
|
||||
const float num_pixels,
|
||||
const bool interlaced
|
||||
) {
|
||||
const float p = color * (1 - abs(dist));
|
||||
return clamp(p, 0, color);
|
||||
}
|
||||
|
||||
|
||||
#endif // _SCANLINE_FUNCTIONS_H
|
@ -0,0 +1,504 @@
|
||||
#ifndef _SPECIAL_FUNCTIONS_H
|
||||
#define _SPECIAL_FUNCTIONS_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// This file implements the following mathematical special functions:
|
||||
// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
|
||||
// 2.) gamma(s), a real-numbered extension of the integer factorial function
|
||||
// It also implements normalized_ligamma(s, z), a normalized lower incomplete
|
||||
// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
|
||||
// be called with an _impl suffix to use an implementation version with a few
|
||||
// extra precomputed parameters (which may be useful for the caller to reuse).
|
||||
// See below for details.
|
||||
//
|
||||
// Design Rationale:
|
||||
// Pretty much every line of code in this file is duplicated four times for
|
||||
// different input types (float4/float3/float2/float). This is unfortunate,
|
||||
// but Cg doesn't allow function templates. Macros would be far less verbose,
|
||||
// but they would make the code harder to document and read. I don't expect
|
||||
// these functions will require a whole lot of maintenance changes unless
|
||||
// someone ever has need for more robust incomplete gamma functions, so code
|
||||
// duplication seems to be the lesser evil in this case.
|
||||
|
||||
|
||||
/////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
|
||||
|
||||
float4 erf6(float4 x)
|
||||
{
|
||||
// Requires: x is the standard parameter to erf().
|
||||
// Returns: Return an Abramowitz/Stegun approximation of erf(), where:
|
||||
// erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
|
||||
// This approximation has a max absolute error of 2.5*10**-5
|
||||
// with solid numerical robustness and efficiency. See:
|
||||
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
|
||||
const float4 sign_x = sign(x);
|
||||
const float4 t = 1.0/(1.0 + 0.47047*abs(x));
|
||||
const float4 result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float3 erf6(const float3 x)
|
||||
{
|
||||
// Float3 version:
|
||||
const float3 sign_x = sign(x);
|
||||
const float3 t = 1.0/(1.0 + 0.47047*abs(x));
|
||||
const float3 result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float2 erf6(const float2 x)
|
||||
{
|
||||
// Float2 version:
|
||||
const float2 sign_x = sign(x);
|
||||
const float2 t = 1.0/(1.0 + 0.47047*abs(x));
|
||||
const float2 result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float erf6(const float x)
|
||||
{
|
||||
// Float version:
|
||||
const float sign_x = sign(x);
|
||||
const float t = 1.0/(1.0 + 0.47047*abs(x));
|
||||
const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float4 erft(const float4 x)
|
||||
{
|
||||
// Requires: x is the standard parameter to erf().
|
||||
// Returns: Approximate erf() with the hyperbolic tangent. The error is
|
||||
// visually noticeable, but it's blazing fast and perceptually
|
||||
// close...at least on ATI hardware. See:
|
||||
// http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
|
||||
// Warning: Only use this if your hardware drivers correctly implement
|
||||
// tanh(): My nVidia 8800GTS returns garbage output.
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float3 erft(const float3 x)
|
||||
{
|
||||
// Float3 version:
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float2 erft(const float2 x)
|
||||
{
|
||||
// Float2 version:
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float erft(const float x)
|
||||
{
|
||||
// Float version:
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float4 erf(const float4 x)
|
||||
{
|
||||
// Requires: x is the standard parameter to erf().
|
||||
// Returns: Some approximation of erf(x), depending on user settings.
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
float3 erf(const float3 x)
|
||||
{
|
||||
// Float3 version:
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
float2 erf(const float2 x)
|
||||
{
|
||||
// Float2 version:
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
float erf(const float x)
|
||||
{
|
||||
// Float version:
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
|
||||
|
||||
float4 gamma_impl(const float4 s, const float4 s_inv)
|
||||
{
|
||||
// Requires: 1.) s is the standard parameter to the gamma function, and
|
||||
// it should lie in the [0, 36] range.
|
||||
// 2.) s_inv = 1.0/s. This implementation function requires
|
||||
// the caller to precompute this value, giving users the
|
||||
// opportunity to reuse it.
|
||||
// Returns: Return approximate gamma function (real-numbered factorial)
|
||||
// output using the Lanczos approximation with two coefficients
|
||||
// calculated using Paul Godfrey's method here:
|
||||
// http://my.fit.edu/~gabdo/gamma.txt
|
||||
// An optimal g value for s in [0, 36] is ~1.12906830989, with
|
||||
// a maximum relative error of 0.000463 for 2**16 equally
|
||||
// evals. We could use three coeffs (0.0000346 error) without
|
||||
// hurting latency, but this allows more parallelism with
|
||||
// outside instructions.
|
||||
static const float g = 1.12906830989;
|
||||
static const float c0 = 0.8109119309638332633713423362694399653724431;
|
||||
static const float c1 = 0.4808354605142681877121661197951496120000040;
|
||||
static const float e = 2.71828182845904523536028747135266249775724709;
|
||||
const float4 sph = s + 0.5;
|
||||
const float4 lanczos_sum = c0 + c1/(s + 1.0);
|
||||
const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
|
||||
// gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
|
||||
// This has less error for small s's than (s -= 1.0) at the beginning.
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float3 gamma_impl(const float3 s, const float3 s_inv)
|
||||
{
|
||||
// Float3 version:
|
||||
static const float g = 1.12906830989;
|
||||
static const float c0 = 0.8109119309638332633713423362694399653724431;
|
||||
static const float c1 = 0.4808354605142681877121661197951496120000040;
|
||||
static const float e = 2.71828182845904523536028747135266249775724709;
|
||||
const float3 sph = s + 0.5;
|
||||
const float3 lanczos_sum = c0 + c1/(s + 1.0);
|
||||
const float3 base = (sph + g)/e;
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float2 gamma_impl(const float2 s, const float2 s_inv)
|
||||
{
|
||||
// Float2 version:
|
||||
static const float g = 1.12906830989;
|
||||
static const float c0 = 0.8109119309638332633713423362694399653724431;
|
||||
static const float c1 = 0.4808354605142681877121661197951496120000040;
|
||||
static const float e = 2.71828182845904523536028747135266249775724709;
|
||||
const float2 sph = s + 0.5;
|
||||
const float2 lanczos_sum = c0 + c1/(s + 1.0);
|
||||
const float2 base = (sph + g)/e;
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float gamma_impl(const float s, const float s_inv)
|
||||
{
|
||||
// Float version:
|
||||
static const float g = 1.12906830989;
|
||||
static const float c0 = 0.8109119309638332633713423362694399653724431;
|
||||
static const float c1 = 0.4808354605142681877121661197951496120000040;
|
||||
static const float e = 2.71828182845904523536028747135266249775724709;
|
||||
const float sph = s + 0.5;
|
||||
const float lanczos_sum = c0 + c1/(s + 1.0);
|
||||
const float base = (sph + g)/e;
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float4 gamma(const float4 s)
|
||||
{
|
||||
// Requires: s is the standard parameter to the gamma function, and it
|
||||
// should lie in the [0, 36] range.
|
||||
// Returns: Return approximate gamma function output with a maximum
|
||||
// relative error of 0.000463. See gamma_impl for details.
|
||||
return gamma_impl(s, 1.0/s);
|
||||
}
|
||||
|
||||
float3 gamma(const float3 s)
|
||||
{
|
||||
// Float3 version:
|
||||
return gamma_impl(s, 1.0/s);
|
||||
}
|
||||
|
||||
float2 gamma(const float2 s)
|
||||
{
|
||||
// Float2 version:
|
||||
return gamma_impl(s, 1.0/s);
|
||||
}
|
||||
|
||||
float gamma(const float s)
|
||||
{
|
||||
// Float version:
|
||||
return gamma_impl(s, 1.0/s);
|
||||
}
|
||||
|
||||
|
||||
//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
|
||||
|
||||
// Lower incomplete gamma function for small s and z (implementation):
|
||||
float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
|
||||
{
|
||||
// Requires: 1.) s < ~0.5
|
||||
// 2.) z <= ~0.775075
|
||||
// 3.) s_inv = 1.0/s (precomputed for outside reuse)
|
||||
// Returns: A series representation for the lower incomplete gamma
|
||||
// function for small s and small z (4 terms).
|
||||
// The actual "rolled up" summation looks like:
|
||||
// last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
|
||||
// sum = last_sign * last_pow / ((s + k) * last_factorial)
|
||||
// for(int i = 0; i < 4; ++i)
|
||||
// {
|
||||
// last_sign *= -1.0; last_pow *= z; last_factorial *= i;
|
||||
// sum += last_sign * last_pow / ((s + k) * last_factorial);
|
||||
// }
|
||||
// Unrolled, constant-unfolded and arranged for madds and parallelism:
|
||||
const float4 scale = pow(z, s);
|
||||
float4 sum = s_inv; // Summation iteration 0 result
|
||||
// Summation iterations 1, 2, and 3:
|
||||
const float4 z_sq = z*z;
|
||||
const float4 denom1 = s + 1.0;
|
||||
const float4 denom2 = 2.0*s + 4.0;
|
||||
const float4 denom3 = 6.0*s + 18.0;
|
||||
//float4 denom4 = 24.0*s + float4(96.0);
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
//sum += z_sq * z_sq / denom4;
|
||||
// Scale and return:
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
|
||||
{
|
||||
// Float3 version:
|
||||
const float3 scale = pow(z, s);
|
||||
float3 sum = s_inv;
|
||||
const float3 z_sq = z*z;
|
||||
const float3 denom1 = s + 1.0;
|
||||
const float3 denom2 = 2.0*s + 4.0;
|
||||
const float3 denom3 = 6.0*s + 18.0;
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
|
||||
{
|
||||
// Float2 version:
|
||||
const float2 scale = pow(z, s);
|
||||
float2 sum = s_inv;
|
||||
const float2 z_sq = z*z;
|
||||
const float2 denom1 = s + 1.0;
|
||||
const float2 denom2 = 2.0*s + 4.0;
|
||||
const float2 denom3 = 6.0*s + 18.0;
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
float ligamma_small_z_impl(const float s, const float z, const float s_inv)
|
||||
{
|
||||
// Float version:
|
||||
const float scale = pow(z, s);
|
||||
float sum = s_inv;
|
||||
const float z_sq = z*z;
|
||||
const float denom1 = s + 1.0;
|
||||
const float denom2 = 2.0*s + 4.0;
|
||||
const float denom3 = 6.0*s + 18.0;
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
// Upper incomplete gamma function for small s and large z (implementation):
|
||||
float4 uigamma_large_z_impl(const float4 s, const float4 z)
|
||||
{
|
||||
// Requires: 1.) s < ~0.5
|
||||
// 2.) z > ~0.775075
|
||||
// Returns: Gauss's continued fraction representation for the upper
|
||||
// incomplete gamma function (4 terms).
|
||||
// The "rolled up" continued fraction looks like this. The denominator
|
||||
// is truncated, and it's calculated "from the bottom up:"
|
||||
// denom = float4('inf');
|
||||
// float4 one = float4(1.0);
|
||||
// for(int i = 4; i > 0; --i)
|
||||
// {
|
||||
// denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
|
||||
// }
|
||||
// Unrolled and constant-unfolded for madds and parallelism:
|
||||
const float4 numerator = pow(z, s) * exp(-z);
|
||||
float4 denom = 7.0 + z - s;
|
||||
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
|
||||
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
|
||||
denom = 1.0 + z - s + (s - 1.0)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
float3 uigamma_large_z_impl(const float3 s, const float3 z)
|
||||
{
|
||||
// Float3 version:
|
||||
const float3 numerator = pow(z, s) * exp(-z);
|
||||
float3 denom = 7.0 + z - s;
|
||||
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
|
||||
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
|
||||
denom = 1.0 + z - s + (s - 1.0)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
float2 uigamma_large_z_impl(const float2 s, const float2 z)
|
||||
{
|
||||
// Float2 version:
|
||||
const float2 numerator = pow(z, s) * exp(-z);
|
||||
float2 denom = 7.0 + z - s;
|
||||
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
|
||||
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
|
||||
denom = 1.0 + z - s + (s - 1.0)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
float uigamma_large_z_impl(const float s, const float z)
|
||||
{
|
||||
// Float version:
|
||||
const float numerator = pow(z, s) * exp(-z);
|
||||
float denom = 7.0 + z - s;
|
||||
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
|
||||
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
|
||||
denom = 1.0 + z - s + (s - 1.0)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
// Normalized lower incomplete gamma function for small s (implementation):
|
||||
float4 normalized_ligamma_impl(const float4 s, const float4 z,
|
||||
const float4 s_inv, const float4 gamma_s_inv)
|
||||
{
|
||||
// Requires: 1.) s < ~0.5
|
||||
// 2.) s_inv = 1/s (precomputed for outside reuse)
|
||||
// 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
|
||||
// Returns: Approximate the normalized lower incomplete gamma function
|
||||
// for s < 0.5. Since we only care about s < 0.5, we only need
|
||||
// to evaluate two branches (not four) based on z. Each branch
|
||||
// uses four terms, with a max relative error of ~0.00182. The
|
||||
// branch threshold and specifics were adapted for fewer terms
|
||||
// from Gil/Segura/Temme's paper here:
|
||||
// http://oai.cwi.nl/oai/asset/20433/20433B.pdf
|
||||
// Evaluate both branches: Real branches test slower even when available.
|
||||
static const float thresh = 0.775075;
|
||||
int4 z_is_large;
|
||||
z_is_large.x = int(z.x > thresh);
|
||||
z_is_large.y = int(z.y > thresh);
|
||||
z_is_large.z = int(z.z > thresh);
|
||||
z_is_large.w = int(z.w > thresh);
|
||||
const float4 large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
// Combine the results from both branches:
|
||||
int4 inverse_z_is_large = saturate(~(z_is_large));
|
||||
return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
|
||||
}
|
||||
|
||||
float3 normalized_ligamma_impl(const float3 s, const float3 z,
|
||||
const float3 s_inv, const float3 gamma_s_inv)
|
||||
{
|
||||
// Float3 version:
|
||||
static const float thresh = 0.775075;
|
||||
int3 z_is_large;
|
||||
z_is_large.x = int(z.x > thresh);
|
||||
z_is_large.y = int(z.y > thresh);
|
||||
z_is_large.z = int(z.z > thresh);
|
||||
const float3 large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
int3 inverse_z_is_large = saturate(~(z_is_large));
|
||||
return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
|
||||
}
|
||||
|
||||
float2 normalized_ligamma_impl(const float2 s, const float2 z,
|
||||
const float2 s_inv, const float2 gamma_s_inv)
|
||||
{
|
||||
// Float2 version:
|
||||
static const float thresh = 0.775075;
|
||||
int2 z_is_large;
|
||||
z_is_large.x = int(z.x > thresh);
|
||||
z_is_large.y = int(z.y > thresh);
|
||||
const float2 large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
int2 inverse_z_is_large = saturate(~(z_is_large));
|
||||
return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
|
||||
}
|
||||
|
||||
float normalized_ligamma_impl(const float s, const float z,
|
||||
const float s_inv, const float gamma_s_inv)
|
||||
{
|
||||
// Float version:
|
||||
static const float thresh = 0.775075;
|
||||
const bool z_is_large = z > thresh;
|
||||
const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
return large_z * float(z_is_large) + small_z * float(!z_is_large);
|
||||
}
|
||||
|
||||
// Normalized lower incomplete gamma function for small s:
|
||||
float4 normalized_ligamma(const float4 s, const float4 z)
|
||||
{
|
||||
// Requires: s < ~0.5
|
||||
// Returns: Approximate the normalized lower incomplete gamma function
|
||||
// for s < 0.5. See normalized_ligamma_impl() for details.
|
||||
const float4 s_inv = 1.0/s;
|
||||
const float4 gamma_s_inv = 1.0/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
float3 normalized_ligamma(const float3 s, const float3 z)
|
||||
{
|
||||
// Float3 version:
|
||||
const float3 s_inv = 1.0/s;
|
||||
const float3 gamma_s_inv = 1.0/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
float2 normalized_ligamma(const float2 s, const float2 z)
|
||||
{
|
||||
// Float2 version:
|
||||
const float2 s_inv = 1.0/s;
|
||||
const float2 gamma_s_inv = 1.0/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
float normalized_ligamma(const float s, const float z)
|
||||
{
|
||||
// Float version:
|
||||
const float s_inv = 1.0/s;
|
||||
const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
#endif // _SPECIAL_FUNCTIONS_H
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,428 @@
|
||||
#ifndef _USER_SETTINGS_H
|
||||
#define _USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only _DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
#ifndef _DRIVERS_ALLOW_DERIVATIVES
|
||||
#define _DRIVERS_ALLOW_DERIVATIVES 0
|
||||
#endif
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#if _DRIVERS_ALLOW_DERIVATIVES
|
||||
#define _DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
#ifndef _DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define _DRIVERS_ALLOW_DYNAMIC_BRANCHES 0
|
||||
#endif
|
||||
|
||||
// Without _DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
#ifndef _ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
#define _ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS 0
|
||||
#endif
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
// #ifndef _DRIVERS_ALLOW_TEX2DLOD
|
||||
// #define _DRIVERS_ALLOW_TEX2DLOD 1
|
||||
// #endif
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
// #ifndef _DRIVERS_ALLOW_TEX2DBIAS
|
||||
// #define _DRIVERS_ALLOW_TEX2DBIAS 0
|
||||
// #endif
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// _INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) _PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) _RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
#ifndef _INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
#define _INTEGRATED_GRAPHICS_COMPATIBILITY_MODE 0
|
||||
#endif
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#ifndef _RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#define _RUNTIME_SHADER_PARAMS_ENABLE 1
|
||||
#endif
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#ifndef _RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#define _RUNTIME_PHOSPHOR_BLOOM_SIGMA 1
|
||||
#endif
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#ifndef _RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#define _RUNTIME_ANTIALIAS_WEIGHTS 1
|
||||
#endif
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
#ifndef _RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#define _RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS 0
|
||||
#endif
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#ifndef _RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define _RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE 1
|
||||
#endif
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
// akgunter:
|
||||
// This is used in crt-royale-geometry-aa-last-pass.fxh.
|
||||
// I've hard-coded it to 1 and hidden it from the UI in the ReShade version because
|
||||
// I don't know a good way to port that logic. If anyone ever does figure that
|
||||
// out, we can uncomment and port that logic and then unhide this definition.
|
||||
#define _RUNTIME_GEOMETRY_TILT 1
|
||||
|
||||
// Specify the geometry mode at runtime?
|
||||
#ifndef _RUNTIME_GEOMETRY_MODE
|
||||
#define _RUNTIME_GEOMETRY_MODE 1
|
||||
#endif
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
// #ifndef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
// #define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT 1
|
||||
// #endif
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Choose between a 64x64 or 512x512 source for the phosphor mask
|
||||
// Mainly affects Sample Mode 1
|
||||
// #ifndef USE_LARGE_PHOSPHOR_MASK
|
||||
// #define USE_LARGE_PHOSPHOR_MASK 1
|
||||
// #endif
|
||||
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#ifndef _PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#define _PHOSPHOR_MASK_MANUALLY_RESIZE 1
|
||||
#endif
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
// #ifndef PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// #define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW 1
|
||||
// #endif
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
|
||||
#define _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS 1
|
||||
#define _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS 2
|
||||
#define _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS 3
|
||||
#define _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS 4
|
||||
|
||||
#if !_RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#ifndef PHOSPHOR_BLOOM_TRIAD_SIZE_MODE
|
||||
#define PHOSPHOR_BLOOM_TRIAD_SIZE_MODE _PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS // [0 - 4]
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and gaussian_beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of gaussian_beam_max_sigma or
|
||||
// mask_num_triads_across.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
#ifndef RADEON_FIX
|
||||
#define RADEON_FIX 0
|
||||
#endif
|
||||
|
||||
#if !RADEON_FIX
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
#else
|
||||
static const float bloom_approx_filter_static = 1.0;
|
||||
#endif
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float gaussian_beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float gaussian_beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float gaussian_beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float gaussian_beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float gaussian_beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float gaussian_beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_back_field_first_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
#ifndef antialias_level
|
||||
#define antialias_level 0.0
|
||||
#endif
|
||||
// static const float aa_level = 12.0; // range [0, 24]
|
||||
// static const float aa_level = 0.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with _RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#ifndef antialias_filter
|
||||
#define antialias_filter 6
|
||||
#endif
|
||||
static const float aa_filter = antialias_filter; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
#ifndef antialias_temporal
|
||||
#define antialias_temporal false
|
||||
#endif
|
||||
static const bool aa_temporal = antialias_temporal;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = shadow mask
|
||||
// 3 = lowres grille, 4 = lowres slot, 5 = lowres shadow
|
||||
static const float mask_type_static = 4.0; // range [0, 5]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires _PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If _RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_size_param_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_width_static = 24.0 / 8.0;
|
||||
// If mask_size_param is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_across_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
// TODO: Nuke this
|
||||
#define mask_size_xy float2(512, 512)
|
||||
|
||||
#endif // _USER_SETTINGS_H
|
Reference in New Issue
Block a user