Add crt-hyllian-sinc.fx, crt-geo-zfast.fx and update others (#3252)

* Add crt-hyllian-sinc.fx, crt-geo-zfast.fx and update others

- Add crt-hyllian-sinc.fx;
- Add crt-geo-zfast.fx;
- Updated bicubic.fx and lanczos3.fx to allow prescaling;
- Add include folder and mask.fxh and geom.fxh;

* Update psx.jpg

- No logos anymore.
This commit is contained in:
Hyllian
2024-07-15 09:06:02 -03:00
committed by GitHub
parent fae6b7ae86
commit cf15591704
8 changed files with 1073 additions and 133 deletions

View File

@ -170,14 +170,14 @@ sampler2D sBackBuffer{Texture=ReShade::BackBufferTex;AddressU=BORDER;AddressV=BO
#define PI 3.141592653589
#ifdef LINEAR_PROCESSING
# define TEX2D(c) pow(tex2D(sBackBuffer, (c)), float4(geom_target_gamma,geom_target_gamma,geom_target_gamma,geom_target_gamma))
# define TEX2D(c) pow(tex2D(sBackBuffer, (c)), geom_target_gamma.xxxx)
#else
# define TEX2D(c) tex2D(sBackBuffer, (c))
#endif
// aspect ratio
#define aspect (geom_invert_aspect==true?float2(ViewportHeight/ViewportWidth,1.0):float2(1.0,ViewportHeight/ViewportWidth))
#define overscan (float2(1.01,1.01));
#define overscan (1.01.xx);
struct ST_VertexOut
@ -189,105 +189,21 @@ struct ST_VertexOut
};
float vs_intersect(float2 xy, float2 sinangle, float2 cosangle)
{
float A = dot(xy,xy) + geom_d*geom_d;
float B = 2.0*(geom_R*(dot(xy,sinangle)-geom_d*cosangle.x*cosangle.y)-geom_d*geom_d);
float C = geom_d*geom_d + 2.0*geom_R*geom_d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
float2 vs_bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
{
float c = vs_intersect(xy, sinangle, cosangle);
float2 point = (float2(c, c)*xy - float2(-geom_R, -geom_R)*sinangle) / float2(geom_R, geom_R);
float2 poc = point/cosangle;
float2 tang = sinangle/cosangle;
float A = dot(tang, tang) + 1.0;
float B = -2.0*dot(poc, tang);
float C = dot(poc, poc) - 1.0;
float a = (-B + sqrt(B*B - 4.0*A*C))/(2.0*A);
float2 uv = (point - a*sinangle)/cosangle;
float r = FIX(geom_R*acos(a));
return uv*r/sin(r/geom_R);
}
float2 vs_fwtrans(float2 uv, float2 sinangle, float2 cosangle)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/geom_R)/r;
float x = 1.0-cos(r/geom_R);
float D = geom_d/geom_R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return geom_d*(uv*cosangle-x*sinangle)/D;
}
float3 vs_maxscale(float2 sinangle, float2 cosangle)
{
float2 c = vs_bkwtrans(-geom_R * sinangle / (1.0 + geom_R/geom_d*cosangle.x*cosangle.y), sinangle, cosangle);
float2 a = float2(0.5,0.5)*aspect;
float2 lo = float2(vs_fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
vs_fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
float2 hi = float2(vs_fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
vs_fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
// Code snippet borrowed from crt-cyclon. (credits to DariusG)
float2 Warp(float2 pos)
{
pos = pos*2.0 - 1.0;
pos *= float2(1.0 + pos.y*pos.y*0, 1.0 + pos.x*pos.x*0);
pos = pos*0.5 + 0.5;
return pos;
}
// Vertex shader generating a triangle covering the entire screen
void VS_CRT_Geom(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out ST_VertexOut vVARS)
{
texcoord.x = (id == 2) ? 2.0 : 0.0;
texcoord.y = (id == 1) ? 2.0 : 0.0;
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
// center screen
texcoord = Warp(texcoord - float2(centerx,centery)/100.0);
float2 SourceSize = 1.0/NormalizedNativePixelSize;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
vVARS.sinangle = sin(float2(geom_x_tilt, geom_y_tilt));
vVARS.cosangle = cos(float2(geom_x_tilt, geom_y_tilt));
vVARS.stretch = vs_maxscale(vVARS.sinangle, vVARS.cosangle);
vVARS.TextureSize = float2(SourceSize.x, SourceSize.y);
}
float intersect(float2 xy, float2 sinangle, float2 cosangle)
{
float A = dot(xy,xy) + geom_d*geom_d;
float B, C;
B = 2.0*(geom_R*(dot(xy,sinangle) - geom_d*cosangle.x*cosangle.y) - geom_d*geom_d);
C = geom_d*geom_d + 2.0*geom_R*geom_d*cosangle.x*cosangle.y;
B = 2.0*(geom_R*(dot(xy,sinangle) - geom_d*cosangle.x*cosangle.y) - geom_d*geom_d);
C = geom_d*geom_d + 2.0*geom_R*geom_d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
}
float2 bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
{
float c = intersect(xy, sinangle, cosangle);
float2 point = (float2(c, c)*xy - float2(-geom_R, -geom_R)*sinangle) / float2(geom_R, geom_R);
float c = intersect(xy, sinangle, cosangle);
float2 point = (c.xx*xy + geom_R.xx*sinangle) / geom_R.xx;
float2 poc = point/cosangle;
float2 tang = sinangle/cosangle;
@ -296,7 +212,7 @@ float2 bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
float C = dot(poc, poc) - 1.0;
float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A);
float2 uv = (point - a*sinangle) / cosangle;
float2 uv = (point - a*sinangle) / cosangle;
float r = FIX(geom_R*acos(a));
return uv*r/sin(r/geom_R);
@ -309,73 +225,91 @@ float2 fwtrans(float2 uv, float2 sinangle, float2 cosangle)
float x = 1.0 - cos(r/geom_R);
float D;
D = geom_d/geom_R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
D = geom_d/geom_R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
return geom_d*(uv*cosangle - x*sinangle)/D;
}
float3 maxscale(float2 sinangle, float2 cosangle)
{
float2 c = bkwtrans(-geom_R * sinangle / (1.0 + geom_R/geom_d*cosangle.x*cosangle.y), sinangle, cosangle);
float2 a = float2(0.5, 0.5)*aspect;
float2 c = bkwtrans(-geom_R * sinangle / (1.0 + geom_R/geom_d*cosangle.x*cosangle.y), sinangle, cosangle);
float2 a = 0.5.xx*aspect;
float2 lo = float2(fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
float2 hi = float2(fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
float2 lo = float2(fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
float2 hi = float2(fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
}
float2 transform(float2 coord, float2 sinangle, float2 cosangle, float3 stretch)
{
coord = (coord - float2(0.5, 0.5))*aspect*stretch.z + stretch.xy;
coord = (coord - 0.5.xx)*aspect*stretch.z + stretch.xy;
return (bkwtrans(coord, sinangle, cosangle) /
float2(geom_overscan_x / 100.0, geom_overscan_y / 100.0)/aspect + float2(0.5, 0.5));
float2(geom_overscan_x / 100.0, geom_overscan_y / 100.0)/aspect + 0.5.xx);
}
// Vertex shader generating a triangle covering the entire screen
void VS_CRT_Geom(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out ST_VertexOut vVARS)
{
texcoord.x = (id == 2) ? 2.0 : 0.0;
texcoord.y = (id == 1) ? 2.0 : 0.0;
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
// Screen centering
texcoord = texcoord - float2(centerx,centery)/100.0;
float2 SourceSize = 1.0/NormalizedNativePixelSize;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
vVARS.sinangle = sin(float2(geom_x_tilt, geom_y_tilt));
vVARS.cosangle = cos(float2(geom_x_tilt, geom_y_tilt));
vVARS.stretch = maxscale(vVARS.sinangle, vVARS.cosangle);
vVARS.TextureSize = float2(SourceSize.x, SourceSize.y);
}
float corner(float2 coord)
{
coord = min(coord, float2(1.0, 1.0) - coord) * aspect;
float2 cdist = float2(geom_cornersize, geom_cornersize);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
coord = min(coord, 1.0.xx - coord) * aspect;
float2 cdist = geom_cornersize.xx;
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*geom_cornersmooth, 0.0, 1.0);
return clamp((cdist.x - dist)*geom_cornersmooth, 0.0, 1.0);
}
float fwidth(float value){
return abs(ddx(value)) + abs(ddy(value));
float fwidth(float value)
{
return abs(ddx(value)) + abs(ddy(value));
}
float4 PS_CRT_Geom(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in ST_VertexOut vVARS) : SV_Target
{
// Texture coordinates of the texel containing the active pixel.
float2 xy;
float2 xy = (geom_curvature == true) ? transform(vTexCoord, vVARS.sinangle, vVARS.cosangle, vVARS.stretch) : vTexCoord;
if (geom_curvature == true)
xy = transform(vTexCoord, vVARS.sinangle, vVARS.cosangle, vVARS.stretch);
else
xy = vTexCoord;
float cval = corner((xy-0.5.xx) * BufferToViewportRatio + 0.5.xx);
float cval = corner((xy-float2(0.5,0.5)) * BufferToViewportRatio + float2(0.5,0.5));
float2 uv_ratio = frac((xy * vVARS.TextureSize - float2(0.5, 0.5)) / vVARS.TextureSize);
float2 uv_ratio = frac((xy * vVARS.TextureSize - 0.5.xx) / vVARS.TextureSize);
float4 col = TEX2D(xy);
#ifndef LINEAR_PROCESSING
col = pow(col , float4(geom_target_gamma, geom_target_gamma, geom_target_gamma, geom_target_gamma));
col = pow(col, geom_target_gamma.xxxx);
#endif
col.rgb *= (geom_lum * step(0.0, uv_ratio.y));
float3 mul_res = col.rgb * float3(cval, cval, cval);
float3 mul_res = col.rgb * cval.xxx;
// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, float3(1.0 / geom_monitor_gamma, 1.0 / geom_monitor_gamma, 1.0 / geom_monitor_gamma));
mul_res = pow(mul_res, 1.0 / geom_monitor_gamma.xxx);
return float4(mul_res, 1.0);
}

View File

@ -0,0 +1,225 @@
#ifndef GEOM_PARAMS_H
#define GEOM_PARAMS_H
/*
Geom Shader - a modified CRT-Geom without CRT features made to be appended/integrated
into any other shaders and provide curvature/warping/oversampling features.
Adapted by Hyllian (2024).
*/
/*
CRT-interlaced
Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
(cgwg gave their consent to have the original version of this shader
distributed under the GPL in this message:
http://board.byuu.org/viewtopic.php?p=26075#p26075
"Feel free to distribute my shaders under the GPL. After all, the
barrel distortion code was taken from the Curvature shader, which is
under the GPL."
)
This shader variant is pre-configured with screen curvature
*/
uniform bool geom_curvature <
ui_type = "radio";
ui_category = "Geom Curvature";
ui_label = "Geom Curvature Toggle";
> = 1.0;
uniform float geom_R <
ui_type = "drag";
ui_min = 0.1;
ui_max = 10.0;
ui_step = 0.1;
ui_category = "Geom Curvature";
ui_label = "Geom Curvature Radius";
> = 2.0;
uniform float geom_d <
ui_type = "drag";
ui_min = 0.1;
ui_max = 3.0;
ui_step = 0.1;
ui_category = "Geom Curvature";
ui_label = "Geom Distance";
> = 1.5;
uniform bool geom_invert_aspect <
ui_type = "radio";
ui_category = "Geom Curvature";
ui_label = "Geom Curvature Aspect Inversion";
> = 0.0;
uniform float geom_cornersize <
ui_type = "drag";
ui_min = 0.001;
ui_max = 1.0;
ui_step = 0.005;
ui_category = "Geom Curvature";
ui_label = "Geom Corner Size";
> = 0.03;
uniform float geom_cornersmooth <
ui_type = "drag";
ui_min = 80.0;
ui_max = 2000.0;
ui_step = 100.0;
ui_category = "Geom Curvature";
ui_label = "Geom Corner Smoothness";
> = 1000.0;
uniform float geom_x_tilt <
ui_type = "drag";
ui_min = -1.0;
ui_max = 1.0;
ui_step = 0.05;
ui_category = "Geom Curvature";
ui_label = "Geom Horizontal Tilt";
> = 0.0;
uniform float geom_y_tilt <
ui_type = "drag";
ui_min = -1.0;
ui_max = 1.0;
ui_step = 0.05;
ui_category = "Geom Curvature";
ui_label = "Geom Vertical Tilt";
> = 0.0;
uniform float geom_overscan_x <
ui_type = "drag";
ui_min = -125.0;
ui_max = 125.0;
ui_step = 0.5;
ui_category = "Geom Curvature";
ui_label = "Geom Horiz. Overscan %";
> = 100.0;
uniform float geom_overscan_y <
ui_type = "drag";
ui_min = -125.0;
ui_max = 125.0;
ui_step = 0.5;
ui_category = "Geom Curvature";
ui_label = "Geom Vert. Overscan %";
> = 100.0;
uniform float centerx <
ui_type = "drag";
ui_min = -100.0;
ui_max = 100.0;
ui_step = 0.1;
ui_category = "Geom Curvature";
ui_label = "Image Center X";
> = 0.00;
uniform float centery <
ui_type = "drag";
ui_min = -100.0;
ui_max = 100.0;
ui_step = 0.1;
ui_category = "Geom Curvature";
ui_label = "Image Center Y";
> = 0.00;
// Macros.
#define FIX(c) max(abs(c), 1e-5);
// aspect ratio
#define aspect (geom_invert_aspect==true?float2(ViewportHeight/ViewportWidth,1.0):float2(1.0,ViewportHeight/ViewportWidth))
float intersect(float2 xy, float2 sinangle, float2 cosangle)
{
float A = dot(xy,xy) + geom_d*geom_d;
float B, C;
B = 2.0*(geom_R*(dot(xy,sinangle) - geom_d*cosangle.x*cosangle.y) - geom_d*geom_d);
C = geom_d*geom_d + 2.0*geom_R*geom_d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
}
float2 bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
{
float c = intersect(xy, sinangle, cosangle);
float2 point = (c.xx*xy + geom_R.xx*sinangle) / geom_R.xx;
float2 poc = point/cosangle;
float2 tang = sinangle/cosangle;
float A = dot(tang, tang) + 1.0;
float B = -2.0*dot(poc, tang);
float C = dot(poc, poc) - 1.0;
float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A);
float2 uv = (point - a*sinangle) / cosangle;
float r = FIX(geom_R*acos(a));
return uv*r/sin(r/geom_R);
}
float2 fwtrans(float2 uv, float2 sinangle, float2 cosangle)
{
float r = FIX(sqrt(dot(uv, uv)));
uv *= sin(r/geom_R)/r;
float x = 1.0 - cos(r/geom_R);
float D;
D = geom_d/geom_R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
return geom_d*(uv*cosangle - x*sinangle)/D;
}
float3 maxscale(float2 sinangle, float2 cosangle)
{
float2 c = bkwtrans(-geom_R * sinangle / (1.0 + geom_R/geom_d*cosangle.x*cosangle.y), sinangle, cosangle);
float2 a = 0.5.xx*aspect;
float2 lo = float2(fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
float2 hi = float2(fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
}
float2 transform(float2 coord, float2 sinangle, float2 cosangle, float3 stretch)
{
coord = (coord - 0.5.xx)*aspect*stretch.z + stretch.xy;
return (bkwtrans(coord, sinangle, cosangle) /
float2(geom_overscan_x / 100.0, geom_overscan_y / 100.0)/aspect + 0.5.xx);
}
float corner(float2 coord)
{
coord = min(coord, 1.0.xx - coord) * aspect;
float2 cdist = geom_cornersize.xx;
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x - dist)*geom_cornersmooth, 0.0, 1.0);
}
float fwidth(float value)
{
return abs(ddx(value)) + abs(ddy(value));
}
#endif // GEOM_PARAMS_H

View File

@ -0,0 +1,242 @@
#ifndef MASK_PARAMS_H
#define MASK_PARAMS_H
uniform float MASK_DARK_STRENGTH <
ui_type = "drag";
ui_min = 0.0;
ui_max = 1.0;
ui_step = 0.01;
ui_category = "CRT Mask";
ui_label = "MASK DARK SUBPIXEL STRENGTH";
> = 0.5;
uniform float MASK_LIGHT_STRENGTH <
ui_type = "drag";
ui_min = 0.0;
ui_max = 6.0;
ui_step = 0.01;
ui_category = "CRT Mask";
ui_label = "MASK LIGHT SUBPIXEL STRENGTH";
> = 0.5;
/* Mask code pasted from subpixel_masks.h. Masks 3 and 4 added. */
float3 mask_weights(float2 coord, int phosphor_layout, float monitor_subpixels, float mask_light_str, float mask_dark_str){
float3 weights = float3(1.,1.,1.);
float on = 1.+mask_light_str;
// float on = 1.;
float off = 1.-mask_dark_str;
float3 red = monitor_subpixels==1.0 ? float3(on, off, off) : float3(off, off, on );
float3 green = float3(off, on, off);
float3 blue = monitor_subpixels==1.0 ? float3(off, off, on ) : float3(on, off, off);
float3 magenta = float3(on, off, on );
float3 yellow = monitor_subpixels==1.0 ? float3(on, on, off) : float3(off, on, on );
float3 cyan = monitor_subpixels==1.0 ? float3(off, on, on ) : float3(on, on, off);
float3 black = float3(off, off, off);
float3 white = float3(on, on, on );
int w, z = 0;
// This pattern is used by a few layouts, so we'll define it here
float3 aperture_weights = lerp(magenta, green, floor(coord.x % 2.0));
if(phosphor_layout == 0) return weights;
else if(phosphor_layout == 1){
// classic aperture for RGB panels; good for 1080p, too small for 4K+
// aka aperture_1_2_bgr
weights = aperture_weights;
return weights;
}
else if(phosphor_layout == 2){
// Classic RGB layout; good for 1080p and lower
float3 bw3[3] = {red, green, blue};
// float3 bw3[3] = float3[](black, yellow, blue);
z = int(floor(coord.x % 3.0));
weights = bw3[z];
return weights;
}
else if(phosphor_layout == 3){
// black and white aperture; good for weird subpixel layouts and low brightness; good for 1080p and lower
float3 bw3[3] = {black, white, black};
z = int(floor(coord.x % 3.0));
weights = bw3[z];
return weights;
}
else if(phosphor_layout == 4){
// reduced TVL aperture for RGB panels. Good for 4k.
// aperture_2_4_rgb
float3 big_ap_rgb[4] = {red, yellow, cyan, blue};
w = int(floor(coord.x % 4.0));
weights = big_ap_rgb[w];
return weights;
}
else if(phosphor_layout == 5){
// black and white aperture; good for weird subpixel layouts and low brightness; good for 4k
float3 bw4[4] = {black, black, white, white};
z = int(floor(coord.x % 4.0));
weights = bw4[z];
return weights;
}
else if(phosphor_layout == 6){
// aperture_1_4_rgb; good for simulating lower
float3 ap4[4] = {red, green, blue, black};
z = int(floor(coord.x % 4.0));
weights = ap4[z];
return weights;
}
else if(phosphor_layout == 7){
// 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+
// aka delta_1_2x1_bgr
float3 inverse_aperture = lerp(green, magenta, floor(coord.x % 2.0));
weights = lerp(aperture_weights, inverse_aperture, floor(coord.y % 2.0));
return weights;
}
else if(phosphor_layout == 8){
// delta_2_4x1_rgb
float3 delta[8] = {
red, yellow, cyan, blue,
cyan, blue, red, yellow
};
w = int(floor(coord.y % 2.0));
z = int(floor(coord.x % 4.0));
weights = delta[4*w+z];
return weights;
}
else if(phosphor_layout == 9){
// delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug
float3 delta1[8] = {
red, green, blue, black,
blue, black, red, green
};
w = int(floor(coord.y % 2.0));
z = int(floor(coord.x % 4.0));
weights = delta1[4*w+z];
return weights;
}
else if(phosphor_layout == 10){
// delta_2_4x2_rgb
float3 delta[16] = {
red, yellow, cyan, blue,
red, yellow, cyan, blue,
cyan, blue, red, yellow,
cyan, blue, red, yellow
};
w = int(floor(coord.y % 4.0));
z = int(floor(coord.x % 4.0));
weights = delta[4*w+z];
return weights;
}
else if(phosphor_layout == 11){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
float3 slotmask[24] = {
red, green, blue, red, green, blue,
red, green, blue, black, black, black,
red, green, blue, red, green, blue,
black, black, black, red, green, blue,
};
w = int(floor(coord.y % 4.0));
z = int(floor(coord.x % 6.0));
// use the indexes to find which color to apply to the current pixel
weights = slotmask[6*w+z];
return weights;
}
else if(phosphor_layout == 12){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
float3 slotmask[24] = {
black, white, black, black, white, black,
black, white, black, black, black, black,
black, white, black, black, white, black,
black, black, black, black, white, black
};
w = int(floor(coord.y % 4.0));
z = int(floor(coord.x % 6.0));
// use the indexes to find which color to apply to the current pixel
weights = slotmask[6*w+z];
return weights;
}
else if(phosphor_layout == 13){
// based on MajorPainInTheCactus' HDR slot mask
float3 slot[32] = {
red, green, blue, black, red, green, blue, black,
red, green, blue, black, black, black, black, black,
red, green, blue, black, red, green, blue, black,
black, black, black, black, red, green, blue, black
};
w = int(floor(coord.y % 4.0));
z = int(floor(coord.x % 8.0));
weights = slot[8*w+z];
return weights;
}
else if(phosphor_layout == 14){
// same as above but for RGB panels
float3 slot2[40] = {
red, yellow, green, blue, blue, red, yellow, green, blue, blue ,
black, green, green, blue, blue, red, red, black, black, black,
red, yellow, green, blue, blue, red, yellow, green, blue, blue ,
red, red, black, black, black, black, green, green, blue, blue
};
w = int(floor(coord.y % 4.0));
z = int(floor(coord.x % 10.0));
weights = slot2[10*w+z];
return weights;
}
else if(phosphor_layout == 15){
// slot_3_7x6_rgb
float3 slot[84] = {
red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue,
red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue,
red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black,
red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue,
red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue,
black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue
};
w = int(floor(coord.y % 6.0));
z = int(floor(coord.x % 14.0));
weights = slot[14*w+z];
return weights;
}
else return weights;
}
#endif // MASK_PARAMS_H