#include #include #include #include #include #include #include #include #include #ifdef __GNUC__ #define CPUINFO_ALLOCA __builtin_alloca #else #define CPUINFO_ALLOCA _alloca #endif static inline uint32_t bit_mask(uint32_t bits) { return (UINT32_C(1) << bits) - UINT32_C(1); } static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity) { #if defined(_M_ARM64) unsigned long index; _BitScanForward64(&index, (unsigned __int64) kaffinity); return (uint32_t) index; #elif defined(_M_ARM) unsigned long index; _BitScanForward(&index, (unsigned long) kaffinity); return (uint32_t) index; #else #error Platform-specific implementation required #endif } static bool cpuinfo_arm_windows_is_wine(void) { HMODULE ntdll = GetModuleHandleW(L"ntdll.dll"); if (ntdll == NULL) { return false; } return GetProcAddress(ntdll, "wine_get_version") != NULL; } BOOL CALLBACK cpuinfo_arm_windows_init(PINIT_ONCE init_once, PVOID parameter, PVOID* context) { struct cpuinfo_processor* processors = NULL; struct cpuinfo_core* cores = NULL; struct cpuinfo_cluster* clusters = NULL; struct cpuinfo_package* packages = NULL; uint32_t* core_efficiency_classes = NULL; PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX processor_infos = NULL; HANDLE heap = GetProcessHeap(); const bool is_wine = cpuinfo_arm_windows_is_wine(); /* WINE doesn't implement GetMaximumProcessorGroupCount and aborts when calling it */ const uint32_t max_group_count = is_wine ? 1 : (uint32_t) GetMaximumProcessorGroupCount(); cpuinfo_log_debug("detected %"PRIu32" processor groups", max_group_count); uint32_t processors_count = 0; uint32_t* processors_per_group = (uint32_t*) CPUINFO_ALLOCA(max_group_count * sizeof(uint32_t)); for (uint32_t i = 0; i < max_group_count; i++) { processors_per_group[i] = GetMaximumProcessorCount((WORD) i); cpuinfo_log_debug("detected %"PRIu32" processors in group %"PRIu32, processors_per_group[i], i); processors_count += processors_per_group[i]; } uint32_t* processors_before_group = (uint32_t*) CPUINFO_ALLOCA(max_group_count * sizeof(uint32_t)); for (uint32_t i = 0, count = 0; i < max_group_count; i++) { processors_before_group[i] = count; cpuinfo_log_debug("detected %"PRIu32" processors before group %"PRIu32, processors_before_group[i], i); count += processors_per_group[i]; } processors = HeapAlloc(heap, HEAP_ZERO_MEMORY, processors_count * sizeof(struct cpuinfo_processor)); if (processors == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors", processors_count * sizeof(struct cpuinfo_processor), processors_count); goto cleanup; } DWORD cores_info_size = 0; if (GetLogicalProcessorInformationEx(RelationProcessorCore, NULL, &cores_info_size) == FALSE) { const DWORD last_error = GetLastError(); if (last_error != ERROR_INSUFFICIENT_BUFFER) { cpuinfo_log_error("failed to query size of processor cores information: error %"PRIu32, (uint32_t) last_error); goto cleanup; } } DWORD packages_info_size = 0; if (GetLogicalProcessorInformationEx(RelationProcessorPackage, NULL, &packages_info_size) == FALSE) { const DWORD last_error = GetLastError(); if (last_error != ERROR_INSUFFICIENT_BUFFER) { cpuinfo_log_error("failed to query size of processor packages information: error %"PRIu32, (uint32_t) last_error); goto cleanup; } } DWORD max_info_size = max(cores_info_size, packages_info_size); processor_infos = HeapAlloc(heap, 0, max_info_size); if (processor_infos == NULL) { cpuinfo_log_error("failed to allocate %"PRIu32" bytes for logical processor information", (uint32_t) max_info_size); goto cleanup; } if (GetLogicalProcessorInformationEx(RelationProcessorPackage, processor_infos, &max_info_size) == FALSE) { cpuinfo_log_error("failed to query processor packages information: error %"PRIu32, (uint32_t) GetLastError()); goto cleanup; } uint32_t packages_count = 0; PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX packages_info_end = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + packages_info_size); for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX package_info = processor_infos; package_info < packages_info_end; package_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) package_info + package_info->Size)) { if (package_info->Relationship != RelationProcessorPackage) { cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor package information", (uint32_t) package_info->Relationship); continue; } /* We assume that packages are reported in APIC order */ const uint32_t package_id = packages_count++; /* Iterate processor groups and set the package part of APIC ID */ for (uint32_t i = 0; i < package_info->Processor.GroupCount; i++) { const uint32_t group_id = package_info->Processor.GroupMask[i].Group; /* Global index of the first logical processor belonging to this group */ const uint32_t group_processors_start = processors_before_group[group_id]; /* Bitmask representing processors in this group belonging to this package */ KAFFINITY group_processors_mask = package_info->Processor.GroupMask[i].Mask; while (group_processors_mask != 0) { const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask); const uint32_t processor_id = group_processors_start + group_processor_id; processors[processor_id].package = (const struct cpuinfo_package*) NULL + package_id; processors[processor_id].windows_group_id = (uint16_t) group_id; processors[processor_id].windows_processor_id = (uint16_t) group_processor_id; /* Reset the lowest bit in affinity mask */ group_processors_mask &= (group_processors_mask - 1); } } } max_info_size = max(cores_info_size, packages_info_size); if (GetLogicalProcessorInformationEx(RelationProcessorCore, processor_infos, &max_info_size) == FALSE) { cpuinfo_log_error("failed to query processor cores information: error %"PRIu32, (uint32_t) GetLastError()); goto cleanup; } uint32_t cores_count = 0; /* Index (among all cores) of the the first core on the current package */ uint32_t package_core_start = 0; uint32_t current_package_apic_id = 0; PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX cores_info_end = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + cores_info_size); for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info = processor_infos; core_info < cores_info_end; core_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) core_info + core_info->Size)) { if (core_info->Relationship != RelationProcessorCore) { cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor core information", (uint32_t) core_info->Relationship); continue; } /* We assume that cores and logical processors are reported in APIC order */ const uint32_t core_id = cores_count++; if (core_efficiency_classes == NULL) core_efficiency_classes = (uint32_t*)HeapAlloc(heap, HEAP_ZERO_MEMORY, sizeof(uint32_t) * cores_count); else core_efficiency_classes = (uint32_t*)HeapReAlloc(heap, HEAP_ZERO_MEMORY, core_efficiency_classes, sizeof(uint32_t) * cores_count); core_efficiency_classes[core_id] = core_info->Processor.EfficiencyClass; uint32_t smt_id = 0; /* Iterate processor groups and set the core & SMT parts of APIC ID */ for (uint32_t i = 0; i < core_info->Processor.GroupCount; i++) { const uint32_t group_id = core_info->Processor.GroupMask[i].Group; /* Global index of the first logical processor belonging to this group */ const uint32_t group_processors_start = processors_before_group[group_id]; /* Bitmask representing processors in this group belonging to this package */ KAFFINITY group_processors_mask = core_info->Processor.GroupMask[i].Mask; while (group_processors_mask != 0) { const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask); const uint32_t processor_id = group_processors_start + group_processor_id; /* Core ID w.r.t package */ const uint32_t package_core_id = core_id - package_core_start; /* Set SMT ID (assume logical processors within the core are reported in APIC order) */ processors[processor_id].smt_id = smt_id++; processors[processor_id].core = (const struct cpuinfo_core*) NULL + core_id; /* Reset the lowest bit in affinity mask */ group_processors_mask &= (group_processors_mask - 1); } } } cores = HeapAlloc(heap, HEAP_ZERO_MEMORY, cores_count * sizeof(struct cpuinfo_core)); if (cores == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores", cores_count * sizeof(struct cpuinfo_core), cores_count); goto cleanup; } clusters = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_cluster)); if (clusters == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters", packages_count * sizeof(struct cpuinfo_cluster), packages_count); goto cleanup; } packages = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_package)); if (packages == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages", packages_count * sizeof(struct cpuinfo_package), packages_count); goto cleanup; } for (uint32_t i = processors_count; i != 0; i--) { const uint32_t processor_id = i - 1; struct cpuinfo_processor* processor = processors + processor_id; /* Adjust core and package pointers for all logical processors */ struct cpuinfo_core* core = (struct cpuinfo_core*) ((uintptr_t) cores + (uintptr_t) processor->core); processor->core = core; struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) ((uintptr_t) clusters + (uintptr_t) processor->cluster); processor->cluster = cluster; struct cpuinfo_package* package = (struct cpuinfo_package*) ((uintptr_t) packages + (uintptr_t) processor->package); processor->package = package; /* This can be overwritten by lower-index processors on the same package */ package->processor_start = processor_id; package->processor_count += 1; /* This can be overwritten by lower-index processors on the same cluster */ cluster->processor_start = processor_id; cluster->processor_count += 1; /* This can be overwritten by lower-index processors on the same core*/ core->processor_start = processor_id; core->processor_count += 1; } /* Set vendor/uarch/CPUID information for cores */ for (uint32_t i = cores_count; i != 0; i--) { const uint32_t global_core_id = i - 1; struct cpuinfo_core* core = cores + global_core_id; const struct cpuinfo_processor* processor = processors + core->processor_start; struct cpuinfo_package* package = (struct cpuinfo_package*) processor->package; struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) processor->cluster; core->cluster = cluster; core->package = package; core->core_id = global_core_id; core->vendor = cpuinfo_vendor_unknown; core->uarch = cpuinfo_uarch_unknown; /* Lazy */ core->frequency = core_efficiency_classes[global_core_id]; /* This can be overwritten by lower-index cores on the same cluster/package */ cluster->core_start = global_core_id; cluster->core_count += 1; package->core_start = global_core_id; package->core_count += 1; } for (uint32_t i = 0; i < packages_count; i++) { struct cpuinfo_package* package = packages + i; struct cpuinfo_cluster* cluster = clusters + i; cluster->package = package; cluster->vendor = cores[cluster->core_start].vendor; cluster->uarch = cores[cluster->core_start].uarch; package->cluster_start = i; package->cluster_count = 1; } /* Commit changes */ cpuinfo_processors = processors; cpuinfo_cores = cores; cpuinfo_clusters = clusters; cpuinfo_packages = packages; cpuinfo_processors_count = processors_count; cpuinfo_cores_count = cores_count; cpuinfo_clusters_count = packages_count; cpuinfo_packages_count = packages_count; MemoryBarrier(); cpuinfo_is_initialized = true; processors = NULL; cores = NULL; clusters = NULL; packages = NULL; cleanup: if (core_efficiency_classes != NULL) { HeapFree(heap, 0, core_efficiency_classes); } if (processors != NULL) { HeapFree(heap, 0, processors); } if (cores != NULL) { HeapFree(heap, 0, cores); } if (clusters != NULL) { HeapFree(heap, 0, clusters); } if (packages != NULL) { HeapFree(heap, 0, packages); } return TRUE; }