winamp/src/common/memmap.cpp
2024-08-05 13:08:42 +10:00

921 lines
28 KiB
C++

// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "memmap.h"
#include "align.h"
#include "assert.h"
#include "error.h"
#include "log.h"
#include "small_string.h"
#include "string_util.h"
#include "fmt/format.h"
#include <memory>
#if defined(_WIN32)
#include "windows_headers.h"
#include <Psapi.h>
#elif defined(__APPLE__)
#ifdef __aarch64__
#include <pthread.h> // pthread_jit_write_protect_np()
#endif
#include <mach-o/dyld.h>
#include <mach-o/getsect.h>
#include <mach/mach_init.h>
#include <mach/mach_port.h>
#include <mach/mach_vm.h>
#include <mach/vm_map.h>
#include <sys/mman.h>
#elif !defined(__ANDROID__)
#include <cerrno>
#include <dlfcn.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#endif
Log_SetChannel(MemMap);
namespace MemMap {
/// Allocates RWX memory at the specified address.
static void* AllocateJITMemoryAt(const void* addr, size_t size);
} // namespace MemMap
#ifdef _WIN32
bool MemMap::MemProtect(void* baseaddr, size_t size, PageProtect mode)
{
DebugAssert((size & (HOST_PAGE_SIZE - 1)) == 0);
DWORD old_protect;
if (!VirtualProtect(baseaddr, size, static_cast<DWORD>(mode), &old_protect))
{
ERROR_LOG("VirtualProtect() failed with error {}", GetLastError());
return false;
}
return true;
}
std::string MemMap::GetFileMappingName(const char* prefix)
{
const unsigned pid = GetCurrentProcessId();
return fmt::format("{}_{}", prefix, pid);
}
void* MemMap::CreateSharedMemory(const char* name, size_t size, Error* error)
{
const std::wstring mapping_name = name ? StringUtil::UTF8StringToWideString(name) : std::wstring();
const HANDLE mapping =
CreateFileMappingW(INVALID_HANDLE_VALUE, nullptr, PAGE_READWRITE, static_cast<DWORD>(size >> 32),
static_cast<DWORD>(size), mapping_name.empty() ? nullptr : mapping_name.c_str());
if (!mapping)
Error::SetWin32(error, "CreateFileMappingW() failed: ", GetLastError());
return static_cast<void*>(mapping);
}
void MemMap::DestroySharedMemory(void* ptr)
{
CloseHandle(static_cast<HANDLE>(ptr));
}
void MemMap::DeleteSharedMemory(const char* name)
{
// Automatically freed on close.
}
void* MemMap::MapSharedMemory(void* handle, size_t offset, void* baseaddr, size_t size, PageProtect mode)
{
void* ret = MapViewOfFileEx(static_cast<HANDLE>(handle), FILE_MAP_READ | FILE_MAP_WRITE,
static_cast<DWORD>(offset >> 32), static_cast<DWORD>(offset), size, baseaddr);
if (!ret)
return nullptr;
if (mode != PageProtect::ReadWrite)
{
DWORD old_prot;
if (!VirtualProtect(ret, size, static_cast<DWORD>(mode), &old_prot))
Panic("Failed to protect memory mapping");
}
return ret;
}
void MemMap::UnmapSharedMemory(void* baseaddr, size_t size)
{
if (!UnmapViewOfFile(baseaddr))
Panic("Failed to unmap shared memory");
}
const void* MemMap::GetBaseAddress()
{
const HMODULE mod = GetModuleHandleW(nullptr);
if (!mod)
return nullptr;
MODULEINFO mi;
if (!GetModuleInformation(GetCurrentProcess(), mod, &mi, sizeof(mi)))
return mod;
return mi.lpBaseOfDll;
}
void* MemMap::AllocateJITMemoryAt(const void* addr, size_t size)
{
void* ptr = static_cast<u8*>(VirtualAlloc(const_cast<void*>(addr), size,
addr ? (MEM_RESERVE | MEM_COMMIT) : MEM_COMMIT, PAGE_EXECUTE_READWRITE));
if (!ptr && !addr) [[unlikely]]
ERROR_LOG("VirtualAlloc(RWX, {}) for internal buffer failed: {}", size, GetLastError());
return ptr;
}
void MemMap::ReleaseJITMemory(void* ptr, size_t size)
{
if (!VirtualFree(ptr, 0, MEM_RELEASE))
ERROR_LOG("Failed to free code pointer {}", static_cast<void*>(ptr));
}
#if defined(CPU_ARCH_ARM32) || defined(CPU_ARCH_ARM64) || defined(CPU_ARCH_RISCV64)
void MemMap::FlushInstructionCache(void* address, size_t size)
{
::FlushInstructionCache(GetCurrentProcess(), address, size);
}
#endif
SharedMemoryMappingArea::SharedMemoryMappingArea() = default;
SharedMemoryMappingArea::~SharedMemoryMappingArea()
{
Destroy();
}
SharedMemoryMappingArea::PlaceholderMap::iterator SharedMemoryMappingArea::FindPlaceholder(size_t offset)
{
if (m_placeholder_ranges.empty())
return m_placeholder_ranges.end();
// this will give us an iterator equal or after page
auto it = m_placeholder_ranges.lower_bound(offset);
if (it == m_placeholder_ranges.end())
{
// check the last page
it = (++m_placeholder_ranges.rbegin()).base();
}
// it's the one we found?
if (offset >= it->first && offset < it->second)
return it;
// otherwise try the one before
if (it == m_placeholder_ranges.begin())
return m_placeholder_ranges.end();
--it;
if (offset >= it->first && offset < it->second)
return it;
else
return m_placeholder_ranges.end();
}
bool SharedMemoryMappingArea::Create(size_t size)
{
Destroy();
AssertMsg(Common::IsAlignedPow2(size, HOST_PAGE_SIZE), "Size is page aligned");
m_base_ptr = static_cast<u8*>(VirtualAlloc2(GetCurrentProcess(), nullptr, size, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER,
PAGE_NOACCESS, nullptr, 0));
if (!m_base_ptr)
return false;
m_size = size;
m_num_pages = size / HOST_PAGE_SIZE;
m_placeholder_ranges.emplace(0, size);
return true;
}
void SharedMemoryMappingArea::Destroy()
{
AssertMsg(m_num_mappings == 0, "No mappings left");
// hopefully this will be okay, and we don't need to coalesce all the placeholders...
if (m_base_ptr && !VirtualFreeEx(GetCurrentProcess(), m_base_ptr, 0, MEM_RELEASE))
Panic("Failed to release shared memory area");
m_placeholder_ranges.clear();
m_base_ptr = nullptr;
m_size = 0;
m_num_pages = 0;
m_num_mappings = 0;
}
u8* SharedMemoryMappingArea::Map(void* file_handle, size_t file_offset, void* map_base, size_t map_size,
PageProtect mode)
{
DebugAssert(static_cast<u8*>(map_base) >= m_base_ptr && static_cast<u8*>(map_base) < (m_base_ptr + m_size));
const size_t map_offset = static_cast<u8*>(map_base) - m_base_ptr;
DebugAssert(Common::IsAlignedPow2(map_offset, HOST_PAGE_SIZE));
DebugAssert(Common::IsAlignedPow2(map_size, HOST_PAGE_SIZE));
// should be a placeholder. unless there's some other mapping we didn't free.
PlaceholderMap::iterator phit = FindPlaceholder(map_offset);
DebugAssertMsg(phit != m_placeholder_ranges.end(), "Page we're mapping is a placeholder");
DebugAssertMsg(map_offset >= phit->first && map_offset < phit->second, "Page is in returned placeholder range");
DebugAssertMsg((map_offset + map_size) <= phit->second, "Page range is in returned placeholder range");
// do we need to split to the left? (i.e. is there a placeholder before this range)
const size_t old_ph_end = phit->second;
if (map_offset != phit->first)
{
phit->second = map_offset;
// split it (i.e. left..start and start..end are now separated)
if (!VirtualFreeEx(GetCurrentProcess(), OffsetPointer(phit->first), (map_offset - phit->first),
MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER))
{
Panic("Failed to left split placeholder for map");
}
}
else
{
// start of the placeholder is getting used, we'll split it right below if there's anything left over
m_placeholder_ranges.erase(phit);
}
// do we need to split to the right? (i.e. is there a placeholder after this range)
if ((map_offset + map_size) != old_ph_end)
{
// split out end..ph_end
m_placeholder_ranges.emplace(map_offset + map_size, old_ph_end);
if (!VirtualFreeEx(GetCurrentProcess(), OffsetPointer(map_offset), map_size,
MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER))
{
Panic("Failed to right split placeholder for map");
}
}
// actually do the mapping, replacing the placeholder on the range
if (!MapViewOfFile3(static_cast<HANDLE>(file_handle), GetCurrentProcess(), map_base, file_offset, map_size,
MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE, nullptr, 0))
{
ERROR_LOG("MapViewOfFile3() failed: {}", GetLastError());
return nullptr;
}
if (mode != PageProtect::ReadWrite)
{
DWORD old_prot;
if (!VirtualProtect(map_base, map_size, static_cast<DWORD>(mode), &old_prot))
Panic("Failed to protect memory mapping");
}
m_num_mappings++;
return static_cast<u8*>(map_base);
}
bool SharedMemoryMappingArea::Unmap(void* map_base, size_t map_size)
{
DebugAssert(static_cast<u8*>(map_base) >= m_base_ptr && static_cast<u8*>(map_base) < (m_base_ptr + m_size));
const size_t map_offset = static_cast<u8*>(map_base) - m_base_ptr;
DebugAssert(Common::IsAlignedPow2(map_offset, HOST_PAGE_SIZE));
DebugAssert(Common::IsAlignedPow2(map_size, HOST_PAGE_SIZE));
// unmap the specified range
if (!UnmapViewOfFile2(GetCurrentProcess(), map_base, MEM_PRESERVE_PLACEHOLDER))
{
ERROR_LOG("UnmapViewOfFile2() failed: {}", GetLastError());
return false;
}
// can we coalesce to the left?
PlaceholderMap::iterator left_it = (map_offset > 0) ? FindPlaceholder(map_offset - 1) : m_placeholder_ranges.end();
if (left_it != m_placeholder_ranges.end())
{
// the left placeholder should end at our start
DebugAssert(map_offset == left_it->second);
left_it->second = map_offset + map_size;
// combine placeholders before and the range we're unmapping, i.e. to the left
if (!VirtualFreeEx(GetCurrentProcess(), OffsetPointer(left_it->first), left_it->second - left_it->first,
MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS))
{
Panic("Failed to coalesce placeholders left for unmap");
}
}
else
{
// this is a new placeholder
left_it = m_placeholder_ranges.emplace(map_offset, map_offset + map_size).first;
}
// can we coalesce to the right?
PlaceholderMap::iterator right_it =
((map_offset + map_size) < m_size) ? FindPlaceholder(map_offset + map_size) : m_placeholder_ranges.end();
if (right_it != m_placeholder_ranges.end())
{
// should start at our end
DebugAssert(right_it->first == (map_offset + map_size));
left_it->second = right_it->second;
m_placeholder_ranges.erase(right_it);
// combine our placeholder and the next, i.e. to the right
if (!VirtualFreeEx(GetCurrentProcess(), OffsetPointer(left_it->first), left_it->second - left_it->first,
MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS))
{
Panic("Failed to coalescae placeholders right for unmap");
}
}
m_num_mappings--;
return true;
}
#elif defined(__APPLE__)
bool MemMap::MemProtect(void* baseaddr, size_t size, PageProtect mode)
{
DebugAssertMsg((size & (HOST_PAGE_SIZE - 1)) == 0, "Size is page aligned");
kern_return_t res = mach_vm_protect(mach_task_self(), reinterpret_cast<mach_vm_address_t>(baseaddr), size, false,
static_cast<vm_prot_t>(mode));
if (res != KERN_SUCCESS) [[unlikely]]
{
ERROR_LOG("mach_vm_protect() failed: {}", res);
return false;
}
return true;
}
std::string MemMap::GetFileMappingName(const char* prefix)
{
// name actually is not used.
return {};
}
void* MemMap::CreateSharedMemory(const char* name, size_t size, Error* error)
{
mach_vm_size_t vm_size = size;
mach_port_t port;
const kern_return_t res = mach_make_memory_entry_64(
mach_task_self(), &vm_size, 0, MAP_MEM_NAMED_CREATE | VM_PROT_READ | VM_PROT_WRITE, &port, MACH_PORT_NULL);
if (res != KERN_SUCCESS)
{
Error::SetStringFmt(error, "mach_make_memory_entry_64() failed: {}", res);
return nullptr;
}
return reinterpret_cast<void*>(static_cast<uintptr_t>(port));
}
void MemMap::DestroySharedMemory(void* ptr)
{
mach_port_deallocate(mach_task_self(), static_cast<mach_port_t>(reinterpret_cast<uintptr_t>(ptr)));
}
void MemMap::DeleteSharedMemory(const char* name)
{
}
void* MemMap::MapSharedMemory(void* handle, size_t offset, void* baseaddr, size_t size, PageProtect mode)
{
mach_vm_address_t ptr = reinterpret_cast<mach_vm_address_t>(baseaddr);
const kern_return_t res = mach_vm_map(mach_task_self(), &ptr, size, 0, baseaddr ? VM_FLAGS_FIXED : VM_FLAGS_ANYWHERE,
static_cast<mach_port_t>(reinterpret_cast<uintptr_t>(handle)), offset, FALSE,
static_cast<vm_prot_t>(mode), VM_PROT_READ | VM_PROT_WRITE, VM_INHERIT_NONE);
if (res != KERN_SUCCESS)
{
ERROR_LOG("mach_vm_map() failed: {}", res);
return nullptr;
}
return reinterpret_cast<void*>(ptr);
}
void MemMap::UnmapSharedMemory(void* baseaddr, size_t size)
{
const kern_return_t res = mach_vm_deallocate(mach_task_self(), reinterpret_cast<mach_vm_address_t>(baseaddr), size);
if (res != KERN_SUCCESS)
Panic("Failed to unmap shared memory");
}
const void* MemMap::GetBaseAddress()
{
u32 name_buffer_size = 0;
_NSGetExecutablePath(nullptr, &name_buffer_size);
if (name_buffer_size > 0) [[likely]]
{
std::unique_ptr<char[]> name_buffer = std::make_unique_for_overwrite<char[]>(name_buffer_size + 1);
if (_NSGetExecutablePath(name_buffer.get(), &name_buffer_size) == 0) [[likely]]
{
name_buffer[name_buffer_size] = 0;
const struct segment_command_64* command = getsegbyname("__TEXT");
if (command) [[likely]]
{
const u8* base = reinterpret_cast<const u8*>(command->vmaddr);
const u32 image_count = _dyld_image_count();
for (u32 i = 0; i < image_count; i++)
{
if (std::strcmp(_dyld_get_image_name(i), name_buffer.get()) == 0)
return base + _dyld_get_image_vmaddr_slide(i);
}
}
}
}
return reinterpret_cast<const void*>(&GetBaseAddress);
}
void* MemMap::AllocateJITMemoryAt(const void* addr, size_t size)
{
#if !defined(__aarch64__)
kern_return_t ret = mach_vm_allocate(mach_task_self(), reinterpret_cast<mach_vm_address_t*>(&addr), size,
addr ? VM_FLAGS_FIXED : VM_FLAGS_ANYWHERE);
if (ret != KERN_SUCCESS)
{
ERROR_LOG("mach_vm_allocate() returned {}", ret);
return nullptr;
}
ret = mach_vm_protect(mach_task_self(), reinterpret_cast<mach_vm_address_t>(addr), size, false,
VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE);
if (ret != KERN_SUCCESS)
{
ERROR_LOG("mach_vm_protect() returned {}", ret);
mach_vm_deallocate(mach_task_self(), reinterpret_cast<mach_vm_address_t>(addr), size);
return nullptr;
}
return const_cast<void*>(addr);
#else
// On ARM64, we need to use MAP_JIT, which means we can't use MAP_FIXED.
if (addr)
return nullptr;
constexpr int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_JIT;
void* ptr = mmap(const_cast<void*>(addr), size, PROT_READ | PROT_WRITE | PROT_EXEC, flags, -1, 0);
if (ptr == MAP_FAILED)
{
ERROR_LOG("mmap(RWX, {}) for internal buffer failed: {}", size, errno);
return nullptr;
}
return ptr;
#endif
}
void MemMap::ReleaseJITMemory(void* ptr, size_t size)
{
#if !defined(__aarch64__)
const kern_return_t res = mach_vm_deallocate(mach_task_self(), reinterpret_cast<mach_vm_address_t>(ptr), size);
if (res != KERN_SUCCESS)
ERROR_LOG("mach_vm_deallocate() failed: {}", res);
#else
if (munmap(ptr, size) != 0)
ERROR_LOG("Failed to free code pointer {}", static_cast<void*>(ptr));
#endif
}
#if defined(CPU_ARCH_ARM32) || defined(CPU_ARCH_ARM64) || defined(CPU_ARCH_RISCV64)
void MemMap::FlushInstructionCache(void* address, size_t size)
{
__builtin___clear_cache(reinterpret_cast<char*>(address), reinterpret_cast<char*>(address) + size);
}
#endif
SharedMemoryMappingArea::SharedMemoryMappingArea() = default;
SharedMemoryMappingArea::~SharedMemoryMappingArea()
{
Destroy();
}
bool SharedMemoryMappingArea::Create(size_t size)
{
AssertMsg(Common::IsAlignedPow2(size, HOST_PAGE_SIZE), "Size is page aligned");
Destroy();
const kern_return_t res =
mach_vm_map(mach_task_self(), reinterpret_cast<mach_vm_address_t*>(&m_base_ptr), size, 0, VM_FLAGS_ANYWHERE,
MEMORY_OBJECT_NULL, 0, false, VM_PROT_NONE, VM_PROT_NONE, VM_INHERIT_NONE);
if (res != KERN_SUCCESS)
{
ERROR_LOG("mach_vm_map() failed: {}", res);
return false;
}
m_size = size;
m_num_pages = size / HOST_PAGE_SIZE;
return true;
}
void SharedMemoryMappingArea::Destroy()
{
AssertMsg(m_num_mappings == 0, "No mappings left");
if (m_base_ptr &&
mach_vm_deallocate(mach_task_self(), reinterpret_cast<mach_vm_address_t>(m_base_ptr), m_size) != KERN_SUCCESS)
{
Panic("Failed to release shared memory area");
}
m_base_ptr = nullptr;
m_size = 0;
m_num_pages = 0;
}
u8* SharedMemoryMappingArea::Map(void* file_handle, size_t file_offset, void* map_base, size_t map_size,
PageProtect mode)
{
DebugAssert(static_cast<u8*>(map_base) >= m_base_ptr && static_cast<u8*>(map_base) < (m_base_ptr + m_size));
const kern_return_t res =
mach_vm_map(mach_task_self(), reinterpret_cast<mach_vm_address_t*>(&map_base), map_size, 0, VM_FLAGS_OVERWRITE,
static_cast<mach_port_t>(reinterpret_cast<uintptr_t>(file_handle)), file_offset, false,
static_cast<vm_prot_t>(mode), VM_PROT_READ | VM_PROT_WRITE, VM_INHERIT_NONE);
if (res != KERN_SUCCESS) [[unlikely]]
{
ERROR_LOG("mach_vm_map() failed: {}", res);
return nullptr;
}
m_num_mappings++;
return static_cast<u8*>(map_base);
}
bool SharedMemoryMappingArea::Unmap(void* map_base, size_t map_size)
{
DebugAssert(static_cast<u8*>(map_base) >= m_base_ptr && static_cast<u8*>(map_base) < (m_base_ptr + m_size));
const kern_return_t res =
mach_vm_map(mach_task_self(), reinterpret_cast<mach_vm_address_t*>(&map_base), map_size, 0, VM_FLAGS_OVERWRITE,
MEMORY_OBJECT_NULL, 0, false, VM_PROT_NONE, VM_PROT_NONE, VM_INHERIT_NONE);
if (res != KERN_SUCCESS) [[unlikely]]
{
ERROR_LOG("mach_vm_map() failed: {}", res);
return false;
}
m_num_mappings--;
return true;
}
#ifdef __aarch64__
static thread_local int s_code_write_depth = 0;
void MemMap::BeginCodeWrite()
{
// DEBUG_LOG("BeginCodeWrite(): {}", s_code_write_depth);
if ((s_code_write_depth++) == 0)
{
// DEBUG_LOG(" pthread_jit_write_protect_np(0)");
pthread_jit_write_protect_np(0);
}
}
void MemMap::EndCodeWrite()
{
// DEBUG_LOG("EndCodeWrite(): {}", s_code_write_depth);
DebugAssert(s_code_write_depth > 0);
if ((--s_code_write_depth) == 0)
{
// DEBUG_LOG(" pthread_jit_write_protect_np(1)");
pthread_jit_write_protect_np(1);
}
}
#endif
#elif !defined(__ANDROID__)
bool MemMap::MemProtect(void* baseaddr, size_t size, PageProtect mode)
{
DebugAssertMsg((size & (HOST_PAGE_SIZE - 1)) == 0, "Size is page aligned");
const int result = mprotect(baseaddr, size, static_cast<int>(mode));
if (result != 0) [[unlikely]]
{
ERROR_LOG("mprotect() for {} at {} failed", size, baseaddr);
return false;
}
return true;
}
std::string MemMap::GetFileMappingName(const char* prefix)
{
const unsigned pid = static_cast<unsigned>(getpid());
#if defined(__FreeBSD__)
// FreeBSD's shm_open(3) requires name to be absolute
return fmt::format("/tmp/{}_{}", prefix, pid);
#else
return fmt::format("{}_{}", prefix, pid);
#endif
}
void* MemMap::CreateSharedMemory(const char* name, size_t size, Error* error)
{
const bool is_anonymous = (!name || *name == 0);
#if defined(__linux__) || defined(__FreeBSD__)
const int fd = is_anonymous ? memfd_create("", 0) : shm_open(name, O_CREAT | O_EXCL | O_RDWR, 0600);
if (fd < 0)
{
Error::SetErrno(error, is_anonymous ? "memfd_create() failed: " : "shm_open() failed: ", errno);
return nullptr;
}
#else
const int fd = shm_open(name, O_CREAT | O_EXCL | O_RDWR, 0600);
if (fd < 0)
{
Error::SetErrno(error, "shm_open() failed: ", errno);
return nullptr;
}
// we're not going to be opening this mapping in other processes, so remove the file
if (is_anonymous)
shm_unlink(name);
#endif
// use fallocate() to ensure we don't SIGBUS later on.
#ifdef __linux__
if (fallocate(fd, 0, 0, static_cast<off_t>(size)) < 0)
{
Error::SetErrno(error, TinyString::from_format("fallocate({}) failed: ", size), errno);
close(fd);
if (!is_anonymous)
shm_unlink(name);
return nullptr;
}
#else
// ensure it's the correct size
if (ftruncate(fd, static_cast<off_t>(size)) < 0)
{
Error::SetErrno(error, TinyString::from_format("ftruncate({}) failed: ", size), errno);
close(fd);
if (!is_anonymous)
shm_unlink(name);
return nullptr;
}
#endif
return reinterpret_cast<void*>(static_cast<intptr_t>(fd));
}
void MemMap::DestroySharedMemory(void* ptr)
{
close(static_cast<int>(reinterpret_cast<intptr_t>(ptr)));
}
void MemMap::DeleteSharedMemory(const char* name)
{
shm_unlink(name);
}
void* MemMap::MapSharedMemory(void* handle, size_t offset, void* baseaddr, size_t size, PageProtect mode)
{
const int flags = (baseaddr != nullptr) ? (MAP_SHARED | MAP_FIXED) : MAP_SHARED;
void* ptr = mmap(baseaddr, size, static_cast<int>(mode), flags, static_cast<int>(reinterpret_cast<intptr_t>(handle)),
static_cast<off_t>(offset));
if (ptr == MAP_FAILED)
return nullptr;
return ptr;
}
void MemMap::UnmapSharedMemory(void* baseaddr, size_t size)
{
if (munmap(baseaddr, size) != 0)
Panic("Failed to unmap shared memory");
}
const void* MemMap::GetBaseAddress()
{
#ifndef __APPLE__
Dl_info info;
if (dladdr(reinterpret_cast<const void*>(&GetBaseAddress), &info) == 0)
{
ERROR_LOG("dladdr() failed");
return nullptr;
}
return info.dli_fbase;
#else
#error Fixme
#endif
}
void* MemMap::AllocateJITMemoryAt(const void* addr, size_t size)
{
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(__linux__)
// Linux does the right thing, allows us to not disturb an existing mapping.
if (addr)
flags |= MAP_FIXED_NOREPLACE;
#elif defined(__FreeBSD__)
// FreeBSD achieves the same with MAP_FIXED and MAP_EXCL.
if (addr)
flags |= MAP_FIXED | MAP_EXCL;
#else
// Targeted mapping not available?
if (addr)
return nullptr;
#endif
void* ptr = mmap(const_cast<void*>(addr), size, PROT_READ | PROT_WRITE | PROT_EXEC, flags, -1, 0);
if (ptr == MAP_FAILED)
{
if (!addr)
ERROR_LOG("mmap(RWX, {}) for internal buffer failed: {}", size, errno);
return nullptr;
}
else if (addr && ptr != addr) [[unlikely]]
{
if (munmap(ptr, size) != 0)
ERROR_LOG("Failed to munmap() incorrectly hinted allocation: {}", errno);
return nullptr;
}
return ptr;
}
void MemMap::ReleaseJITMemory(void* ptr, size_t size)
{
if (munmap(ptr, size) != 0)
ERROR_LOG("Failed to free code pointer {}", static_cast<void*>(ptr));
}
#if defined(CPU_ARCH_ARM32) || defined(CPU_ARCH_ARM64) || defined(CPU_ARCH_RISCV64)
void MemMap::FlushInstructionCache(void* address, size_t size)
{
__builtin___clear_cache(reinterpret_cast<char*>(address), reinterpret_cast<char*>(address) + size);
}
#endif
SharedMemoryMappingArea::SharedMemoryMappingArea() = default;
SharedMemoryMappingArea::~SharedMemoryMappingArea()
{
Destroy();
}
bool SharedMemoryMappingArea::Create(size_t size)
{
AssertMsg(Common::IsAlignedPow2(size, HOST_PAGE_SIZE), "Size is page aligned");
Destroy();
void* alloc = mmap(nullptr, size, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (alloc == MAP_FAILED)
return false;
m_base_ptr = static_cast<u8*>(alloc);
m_size = size;
m_num_pages = size / HOST_PAGE_SIZE;
return true;
}
void SharedMemoryMappingArea::Destroy()
{
AssertMsg(m_num_mappings == 0, "No mappings left");
if (m_base_ptr && munmap(m_base_ptr, m_size) != 0)
Panic("Failed to release shared memory area");
m_base_ptr = nullptr;
m_size = 0;
m_num_pages = 0;
}
u8* SharedMemoryMappingArea::Map(void* file_handle, size_t file_offset, void* map_base, size_t map_size,
PageProtect mode)
{
DebugAssert(static_cast<u8*>(map_base) >= m_base_ptr && static_cast<u8*>(map_base) < (m_base_ptr + m_size));
void* const ptr = mmap(map_base, map_size, static_cast<int>(mode), MAP_SHARED | MAP_FIXED,
static_cast<int>(reinterpret_cast<intptr_t>(file_handle)), static_cast<off_t>(file_offset));
if (ptr == MAP_FAILED)
return nullptr;
m_num_mappings++;
return static_cast<u8*>(ptr);
}
bool SharedMemoryMappingArea::Unmap(void* map_base, size_t map_size)
{
DebugAssert(static_cast<u8*>(map_base) >= m_base_ptr && static_cast<u8*>(map_base) < (m_base_ptr + m_size));
if (mmap(map_base, map_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) == MAP_FAILED)
return false;
m_num_mappings--;
return true;
}
#endif
void* MemMap::AllocateJITMemory(size_t size)
{
const u8* base =
reinterpret_cast<const u8*>(Common::AlignDownPow2(reinterpret_cast<uintptr_t>(GetBaseAddress()), HOST_PAGE_SIZE));
u8* ptr = nullptr;
#if !defined(CPU_ARCH_ARM64) || !defined(__APPLE__)
#if defined(CPU_ARCH_X64)
static constexpr size_t assume_binary_size = 64 * 1024 * 1024;
static constexpr size_t step = 64 * 1024 * 1024;
static constexpr size_t max_displacement = 0x80000000u;
#elif defined(CPU_ARCH_ARM64) || defined(CPU_ARCH_RISCV64)
static constexpr size_t assume_binary_size = 16 * 1024 * 1024;
static constexpr size_t step = 8 * 1024 * 1024;
static constexpr size_t max_displacement =
1024 * 1024 * 1024; // technically 4GB, but we don't want to spend that much time trying
#elif defined(CPU_ARCH_ARM32)
static constexpr size_t assume_binary_size = 8 * 1024 * 1024; // Wishful thinking...
static constexpr size_t step = 2 * 1024 * 1024;
static constexpr size_t max_displacement = 32 * 1024 * 1024;
#else
#error Unhandled architecture.
#endif
const size_t max_displacement_from_start = max_displacement - size;
Assert(size <= max_displacement);
// Try to find a region in the max displacement range of the process base address.
// Assume that the DuckStation binary will at max be some size, release is currently around 12MB on Windows.
// Therefore the max offset is +/- 12MB + code_size. Try allocating in steps by incrementing the pointer, then if no
// address range is found, go backwards from the base address (which will probably fail).
const u8* min_address =
base - std::min(reinterpret_cast<ptrdiff_t>(base), static_cast<ptrdiff_t>(max_displacement_from_start));
const u8* max_address = base + max_displacement_from_start;
VERBOSE_LOG("Base address: {}", static_cast<const void*>(base));
VERBOSE_LOG("Acceptable address range: {} - {}", static_cast<const void*>(min_address),
static_cast<const void*>(max_address));
// Start offset by the expected binary size.
for (const u8* current_address = base + assume_binary_size;; current_address += step)
{
VERBOSE_LOG("Trying {} (displacement 0x{:X})", static_cast<const void*>(current_address),
static_cast<ptrdiff_t>(current_address - base));
if ((ptr = static_cast<u8*>(AllocateJITMemoryAt(current_address, size))))
break;
if ((reinterpret_cast<uintptr_t>(current_address) + step) > reinterpret_cast<uintptr_t>(max_address) ||
(reinterpret_cast<uintptr_t>(current_address) + step) < reinterpret_cast<uintptr_t>(current_address))
{
break;
}
}
// Try before (will likely fail).
if (!ptr && reinterpret_cast<uintptr_t>(base) >= step)
{
for (const u8* current_address = base - step;; current_address -= step)
{
VERBOSE_LOG("Trying {} (displacement 0x{:X})", static_cast<const void*>(current_address),
static_cast<ptrdiff_t>(base - current_address));
if ((ptr = static_cast<u8*>(AllocateJITMemoryAt(current_address, size))))
break;
if ((reinterpret_cast<uintptr_t>(current_address) - step) < reinterpret_cast<uintptr_t>(min_address) ||
(reinterpret_cast<uintptr_t>(current_address) - step) > reinterpret_cast<uintptr_t>(current_address))
{
break;
}
}
}
if (!ptr)
{
#ifdef CPU_ARCH_X64
ERROR_LOG("Failed to allocate JIT buffer in range, expect crashes.");
#endif
if (!(ptr = static_cast<u8*>(AllocateJITMemoryAt(nullptr, size))))
return ptr;
}
#else
// We cannot control where the buffer gets allocated on Apple Silicon. Hope for the best.
if (!(ptr = static_cast<u8*>(AllocateJITMemoryAt(nullptr, size))))
return ptr;
#endif
INFO_LOG("Allocated JIT buffer of size {} at {} (0x{:X} bytes / {} MB away)", size, static_cast<void*>(ptr),
std::abs(static_cast<ptrdiff_t>(ptr - base)),
(std::abs(static_cast<ptrdiff_t>(ptr - base)) + (1024 * 1024 - 1)) / (1024 * 1024));
return ptr;
}