Connor McLaughlin c27026aed5 dep: Add cpuinfo
2022-09-13 17:50:42 +10:00

335 lines
12 KiB
C

#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <cpuinfo.h>
#include <arm/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>
#include <windows.h>
#ifdef __GNUC__
#define CPUINFO_ALLOCA __builtin_alloca
#else
#define CPUINFO_ALLOCA _alloca
#endif
static inline uint32_t bit_mask(uint32_t bits) {
return (UINT32_C(1) << bits) - UINT32_C(1);
}
static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity) {
#if defined(_M_ARM64)
unsigned long index;
_BitScanForward64(&index, (unsigned __int64) kaffinity);
return (uint32_t) index;
#elif defined(_M_ARM)
unsigned long index;
_BitScanForward(&index, (unsigned long) kaffinity);
return (uint32_t) index;
#else
#error Platform-specific implementation required
#endif
}
static bool cpuinfo_arm_windows_is_wine(void) {
HMODULE ntdll = GetModuleHandleW(L"ntdll.dll");
if (ntdll == NULL) {
return false;
}
return GetProcAddress(ntdll, "wine_get_version") != NULL;
}
BOOL CALLBACK cpuinfo_arm_windows_init(PINIT_ONCE init_once, PVOID parameter, PVOID* context) {
struct cpuinfo_processor* processors = NULL;
struct cpuinfo_core* cores = NULL;
struct cpuinfo_cluster* clusters = NULL;
struct cpuinfo_package* packages = NULL;
uint32_t* core_efficiency_classes = NULL;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX processor_infos = NULL;
HANDLE heap = GetProcessHeap();
const bool is_wine = cpuinfo_arm_windows_is_wine();
/* WINE doesn't implement GetMaximumProcessorGroupCount and aborts when calling it */
const uint32_t max_group_count = is_wine ? 1 : (uint32_t) GetMaximumProcessorGroupCount();
cpuinfo_log_debug("detected %"PRIu32" processor groups", max_group_count);
uint32_t processors_count = 0;
uint32_t* processors_per_group = (uint32_t*) CPUINFO_ALLOCA(max_group_count * sizeof(uint32_t));
for (uint32_t i = 0; i < max_group_count; i++) {
processors_per_group[i] = GetMaximumProcessorCount((WORD) i);
cpuinfo_log_debug("detected %"PRIu32" processors in group %"PRIu32,
processors_per_group[i], i);
processors_count += processors_per_group[i];
}
uint32_t* processors_before_group = (uint32_t*) CPUINFO_ALLOCA(max_group_count * sizeof(uint32_t));
for (uint32_t i = 0, count = 0; i < max_group_count; i++) {
processors_before_group[i] = count;
cpuinfo_log_debug("detected %"PRIu32" processors before group %"PRIu32,
processors_before_group[i], i);
count += processors_per_group[i];
}
processors = HeapAlloc(heap, HEAP_ZERO_MEMORY, processors_count * sizeof(struct cpuinfo_processor));
if (processors == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
processors_count * sizeof(struct cpuinfo_processor), processors_count);
goto cleanup;
}
DWORD cores_info_size = 0;
if (GetLogicalProcessorInformationEx(RelationProcessorCore, NULL, &cores_info_size) == FALSE) {
const DWORD last_error = GetLastError();
if (last_error != ERROR_INSUFFICIENT_BUFFER) {
cpuinfo_log_error("failed to query size of processor cores information: error %"PRIu32,
(uint32_t) last_error);
goto cleanup;
}
}
DWORD packages_info_size = 0;
if (GetLogicalProcessorInformationEx(RelationProcessorPackage, NULL, &packages_info_size) == FALSE) {
const DWORD last_error = GetLastError();
if (last_error != ERROR_INSUFFICIENT_BUFFER) {
cpuinfo_log_error("failed to query size of processor packages information: error %"PRIu32,
(uint32_t) last_error);
goto cleanup;
}
}
DWORD max_info_size = max(cores_info_size, packages_info_size);
processor_infos = HeapAlloc(heap, 0, max_info_size);
if (processor_infos == NULL) {
cpuinfo_log_error("failed to allocate %"PRIu32" bytes for logical processor information",
(uint32_t) max_info_size);
goto cleanup;
}
if (GetLogicalProcessorInformationEx(RelationProcessorPackage, processor_infos, &max_info_size) == FALSE) {
cpuinfo_log_error("failed to query processor packages information: error %"PRIu32,
(uint32_t) GetLastError());
goto cleanup;
}
uint32_t packages_count = 0;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX packages_info_end =
(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + packages_info_size);
for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX package_info = processor_infos;
package_info < packages_info_end;
package_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) package_info + package_info->Size))
{
if (package_info->Relationship != RelationProcessorPackage) {
cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor package information",
(uint32_t) package_info->Relationship);
continue;
}
/* We assume that packages are reported in APIC order */
const uint32_t package_id = packages_count++;
/* Iterate processor groups and set the package part of APIC ID */
for (uint32_t i = 0; i < package_info->Processor.GroupCount; i++) {
const uint32_t group_id = package_info->Processor.GroupMask[i].Group;
/* Global index of the first logical processor belonging to this group */
const uint32_t group_processors_start = processors_before_group[group_id];
/* Bitmask representing processors in this group belonging to this package */
KAFFINITY group_processors_mask = package_info->Processor.GroupMask[i].Mask;
while (group_processors_mask != 0) {
const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask);
const uint32_t processor_id = group_processors_start + group_processor_id;
processors[processor_id].package = (const struct cpuinfo_package*) NULL + package_id;
processors[processor_id].windows_group_id = (uint16_t) group_id;
processors[processor_id].windows_processor_id = (uint16_t) group_processor_id;
/* Reset the lowest bit in affinity mask */
group_processors_mask &= (group_processors_mask - 1);
}
}
}
max_info_size = max(cores_info_size, packages_info_size);
if (GetLogicalProcessorInformationEx(RelationProcessorCore, processor_infos, &max_info_size) == FALSE) {
cpuinfo_log_error("failed to query processor cores information: error %"PRIu32,
(uint32_t) GetLastError());
goto cleanup;
}
uint32_t cores_count = 0;
/* Index (among all cores) of the the first core on the current package */
uint32_t package_core_start = 0;
uint32_t current_package_apic_id = 0;
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX cores_info_end =
(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + cores_info_size);
for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info = processor_infos;
core_info < cores_info_end;
core_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) core_info + core_info->Size))
{
if (core_info->Relationship != RelationProcessorCore) {
cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor core information",
(uint32_t) core_info->Relationship);
continue;
}
/* We assume that cores and logical processors are reported in APIC order */
const uint32_t core_id = cores_count++;
if (core_efficiency_classes == NULL)
core_efficiency_classes = (uint32_t*)HeapAlloc(heap, HEAP_ZERO_MEMORY, sizeof(uint32_t) * cores_count);
else
core_efficiency_classes = (uint32_t*)HeapReAlloc(heap, HEAP_ZERO_MEMORY, core_efficiency_classes, sizeof(uint32_t) * cores_count);
core_efficiency_classes[core_id] = core_info->Processor.EfficiencyClass;
uint32_t smt_id = 0;
/* Iterate processor groups and set the core & SMT parts of APIC ID */
for (uint32_t i = 0; i < core_info->Processor.GroupCount; i++) {
const uint32_t group_id = core_info->Processor.GroupMask[i].Group;
/* Global index of the first logical processor belonging to this group */
const uint32_t group_processors_start = processors_before_group[group_id];
/* Bitmask representing processors in this group belonging to this package */
KAFFINITY group_processors_mask = core_info->Processor.GroupMask[i].Mask;
while (group_processors_mask != 0) {
const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask);
const uint32_t processor_id = group_processors_start + group_processor_id;
/* Core ID w.r.t package */
const uint32_t package_core_id = core_id - package_core_start;
/* Set SMT ID (assume logical processors within the core are reported in APIC order) */
processors[processor_id].smt_id = smt_id++;
processors[processor_id].core = (const struct cpuinfo_core*) NULL + core_id;
/* Reset the lowest bit in affinity mask */
group_processors_mask &= (group_processors_mask - 1);
}
}
}
cores = HeapAlloc(heap, HEAP_ZERO_MEMORY, cores_count * sizeof(struct cpuinfo_core));
if (cores == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
cores_count * sizeof(struct cpuinfo_core), cores_count);
goto cleanup;
}
clusters = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_cluster));
if (clusters == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
packages_count * sizeof(struct cpuinfo_cluster), packages_count);
goto cleanup;
}
packages = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_package));
if (packages == NULL) {
cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
packages_count * sizeof(struct cpuinfo_package), packages_count);
goto cleanup;
}
for (uint32_t i = processors_count; i != 0; i--) {
const uint32_t processor_id = i - 1;
struct cpuinfo_processor* processor = processors + processor_id;
/* Adjust core and package pointers for all logical processors */
struct cpuinfo_core* core =
(struct cpuinfo_core*) ((uintptr_t) cores + (uintptr_t) processor->core);
processor->core = core;
struct cpuinfo_cluster* cluster =
(struct cpuinfo_cluster*) ((uintptr_t) clusters + (uintptr_t) processor->cluster);
processor->cluster = cluster;
struct cpuinfo_package* package =
(struct cpuinfo_package*) ((uintptr_t) packages + (uintptr_t) processor->package);
processor->package = package;
/* This can be overwritten by lower-index processors on the same package */
package->processor_start = processor_id;
package->processor_count += 1;
/* This can be overwritten by lower-index processors on the same cluster */
cluster->processor_start = processor_id;
cluster->processor_count += 1;
/* This can be overwritten by lower-index processors on the same core*/
core->processor_start = processor_id;
core->processor_count += 1;
}
/* Set vendor/uarch/CPUID information for cores */
for (uint32_t i = cores_count; i != 0; i--) {
const uint32_t global_core_id = i - 1;
struct cpuinfo_core* core = cores + global_core_id;
const struct cpuinfo_processor* processor = processors + core->processor_start;
struct cpuinfo_package* package = (struct cpuinfo_package*) processor->package;
struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) processor->cluster;
core->cluster = cluster;
core->package = package;
core->core_id = global_core_id;
core->vendor = cpuinfo_vendor_unknown;
core->uarch = cpuinfo_uarch_unknown;
/* Lazy */
core->frequency = core_efficiency_classes[global_core_id];
/* This can be overwritten by lower-index cores on the same cluster/package */
cluster->core_start = global_core_id;
cluster->core_count += 1;
package->core_start = global_core_id;
package->core_count += 1;
}
for (uint32_t i = 0; i < packages_count; i++) {
struct cpuinfo_package* package = packages + i;
struct cpuinfo_cluster* cluster = clusters + i;
cluster->package = package;
cluster->vendor = cores[cluster->core_start].vendor;
cluster->uarch = cores[cluster->core_start].uarch;
package->cluster_start = i;
package->cluster_count = 1;
}
/* Commit changes */
cpuinfo_processors = processors;
cpuinfo_cores = cores;
cpuinfo_clusters = clusters;
cpuinfo_packages = packages;
cpuinfo_processors_count = processors_count;
cpuinfo_cores_count = cores_count;
cpuinfo_clusters_count = packages_count;
cpuinfo_packages_count = packages_count;
MemoryBarrier();
cpuinfo_is_initialized = true;
processors = NULL;
cores = NULL;
clusters = NULL;
packages = NULL;
cleanup:
if (core_efficiency_classes != NULL) {
HeapFree(heap, 0, core_efficiency_classes);
}
if (processors != NULL) {
HeapFree(heap, 0, processors);
}
if (cores != NULL) {
HeapFree(heap, 0, cores);
}
if (clusters != NULL) {
HeapFree(heap, 0, clusters);
}
if (packages != NULL) {
HeapFree(heap, 0, packages);
}
return TRUE;
}